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Abstract The correlation process in a GNSS receiver

tracking module can be computationally prohibitive if it is

executed on a central processing unit (CPU) using single-

instruction single-data algorithms. An efficient replacement

for a CPU is a graphics processing unit (GPU). A GPU is

composed of massive parallel processors with high floating

point performance and memory bandwidth. It can be used

to accelerate the burdensome correlation process in GNSS

software receivers. We propose a novel GPU-based cor-

relator architecture for GNSS software receivers, which is

independent of the GPU device, the number of the pro-

cessing channels, the signal type, and the correlation time.

The proposed architecture is implemented and optimized

using CUDA, a parallel computing platform and pro-

gramming model for GPUs. We focus on the following

aspects: the design and the time complexity analysis of the

proposed GPU-based correlator algorithm, the tests that

verify the correctness and the optimization of the imple-

mentation, and the performance evaluation of the opti-

mized GPU-based correlator. Moreover, we introduce

some new CUDA features that can be applied in a GPU-

based correlator.

Keywords Global navigation satellite system (GNSS) �
Software receivers � Correlation � CUDA � Real time �
Graphics processing unit (GPU)

Introduction

The correlation process, which is executed in a GNSS

tracking module and includes carrier and code wipe-off, is

the most burdensome operation in a GNSS software

receiver. This is due to the high sampling rate and the

multiple channel architecture. The computational load of

the correlation process amounts to about 96 % of the total

computation during the execution time of a GNSS software

receiver on a CPU (Chen et al. 2012). In order to operate a

GNSS software receiver in real time, the correlation pro-

cess in GNSS software receivers should be accelerated.

Single-instruction multiple-data (SIMD) instructions

(Heckler and Garrison 2006) and multi-threaded pro-

gramming (Chen et al. 2012) running on a multi-core CPU

are two conventional methods employed to accelerate the

correlation process. Limited by the computational power of

a CPU, however, such methods will not always meet the

computational demand for future multi-constellation and

multi-frequency signal processing in real time.

Compared with a CPU, a GPU is composed of massive

cores with tremendous computational power and high

memory bandwidth. The general-purpose computing on

GPU (GPGPU) provides an approach to accelerate scien-

tific applications, including the correlation process in

GNSS software receivers. Earlier researchers working on

GPGPU had to map scientific calculations onto graphics

APIs (Wilt 2013). The emergence of Brook (Buck et al.

2004) and its successor CUDA have significantly simpli-

fied GPU programming and enhanced the computing power

of a GPU by offering a high-level language interface to

handle the low-level arithmetic and memory resources of a

GPU. Implementing the correlation process in GNSS

software receivers via CUDA has been carried out by many

researchers (Hobiger et al. 2010; Pany et al. 2010a, b; Seo
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et al. 2011; Karimi et al. 2013; Roule et al. 2013; Huang

et al. 2013; Park et al. 2014).

We propose a GPU-based correlator architecture design

for GNSS software receivers. Compared with previous

designs, our algorithm is independent of the GPU device,

the number of the tracking channels, the signal type, and

the correlation time. The proposed architecture is imple-

mented using an NVIDIA GeForce GTX 750 Ti GPU,

which can maintain more than 300 tracking channels with a

19.5 MHz sampling rate (9.75 MHz for both in-phase and

quadrature-phase samples) and a 4-bit resolution. More-

over, we present an optimization process on how to achieve

the maximum performance of the proposed algorithm on a

GPU. We also conduct theoretical and experimental com-

parisons between the GPU-based and the corresponding

CPU-based correlation algorithms. Finally, we introduce

some advanced features in the latest version of CUDA

Toolkit that can be applied in the proposed algorithm.

The signal models and the principle of the GPU-based

correlation are presented first. The CUDA programming

model in use is then introduced. The proposed parallel

algorithm for the GPU-based correlator and its time com-

plexity analysis are illustrated in detail in the following two

sections. Two subsequent sections are devoted to the ver-

ification and optimization of the code implementation of

the proposed algorithm. Following that, an overall perfor-

mance evaluation on the GPU-based correlator is con-

ducted. Finally, conclusions are presented.

Signal models and correlation

The prompt correlated signal SIQ,p can be found from

SIQ;p ¼
XN�1

n¼0

SIFðnÞR�
carrðnÞCpðnÞ ð1Þ

where SIF(n) is the received IF signal, Rcarr(n) is the local

carrier replica signal, and Cp(n) is the local prompt code

replica signal. The early correlated signal SIQ,e and the late

correlated signal SIQ,l can be calculated similarly as the

prompt one.

In order to achieve parallel correlation, arrays of the

received complex signal and the local replica signals

should be prepared before the correlation process. In case

of tracking, the correlation process is repeated with every

tracking update. The local carrier signal step Dh and the

local code signal step Dc are adjusted based on the tracking

output. The number of correlation samples N, the initial

carrier phase h0, and the initial code offset c0 are related to

the last correlation. Assuming that the correlation time is

one code duration, the quantities N, h0, and c0 in the next

correlation can be calculated as

NðmÞ ¼ ðclen � c0ðm� 1ÞÞDcðm� 1Þfs ðm ¼ 1; 2; . . .Þ
ð2Þ

h0ðmÞ ¼ h0ðm� 1Þ þ NðmÞDhðmÞ ð3Þ
c0ðmÞ ¼ c0ðm� 1Þ þ NðmÞDcðmÞ � clen ð4Þ

where m is the index of one correlation in time domain, fs is

the sampling rate, and clen is the code length. In Eq. (2),

N(m) is floored into an integer before the actual calculation.

CUDA programming model

CUDA is a parallel platform invented by NVIDIA for

C/C??/Fortran programming on the GPU (Wilt 2013).

CUDA C is employed here to design and realize a GPU-

based correlator. In order to utilize the computational

power of the multiprocessors in GPU, kernels (functions)

that are executed by each individual CUDA thread should

be defined as C functions using the keyword ‘‘__global__.’’

The thread and memory hierarchy of a GPU can be sum-

marized as follows: Each of the 32 threads is coupled into a

warp so that they can execute one common instruction with

different data at a time. Branch divergence, which means

executing different instructions in threads of a warp, will

significantly decrease efficiency, and thus, it should be

avoided. Warps are grouped into blocks, where threads of a

block are executed concurrently on one multi-threaded

streaming multiprocessor (SM). Blocks are further grouped

into a grid, where they are executed concurrently on mul-

tiple SMs in a GPU.

CUDA provides different types of memories in the GPU

to maximize the performance. Global memory, shared

memory, local memory, and registers are used in the pro-

posed GPU-based correlator architecture design. They are

allocated for grid, block, and thread. Figure 1 illustrates the

thread and memory hierarchy in detail.

The bandwidth of different kinds of GPU memories

varies. The registers provide the fastest memory transfer

with nearly 8 TB/s bandwidth. The shared memory and

global memory follow the registers in terms of the memory

transfer speed. The local memory is an abstract memory

Thread
Warp
Block
Grid Global memory

Shared memory

Local memory
Registers

Host memory

8,000 GB/s

1,600 GB/s
177 GB/s

8 GB/s

GPU

CPU

Fig. 1 Thread and memory hierarchy in a GPU
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type to hold spilled registers (Farber 2011). Register spil-

ling occurs when a block requires more registers on an SM

than the available ones. GPUs with CUDA 2.0 or higher

capabilities spill registers to L1 cache, which is physically

integrated with the shared memory. Older GPUs spill

registers directly to the global memory. Therefore, the local

memory bandwidth is dependent on the device. The

slowest memory transfer is between the host memory and

the device memory with about 8 GB/s bandwidth. This

bandwidth value is limited by the peripheral component

interconnect express (PCIe) connector between the CPU

memory and the GPU memory.

Algorithm design

The correlation process can be parallelized on both the

tracking channel level and the sample level. Considering

the aforementioned CUDA programming model, each

tracking channel can be mapped into one block, and each

signal sample can be mapped into one thread. The inte-

gration after carrier and code wipe-off can be regarded as a

block reduction, which means calculating the sum of the

variables in threads of a block.

The carrier and code wipe-off process for each sample

can be put into one thread directly. The key strategy to

design a parallel algorithm for carrier and code wipe-off

lies on the data structure chosen for the input data and how

the input data are mapped into each thread.

The input of the kernel correlation function in the pro-

posed GPU structure consists the following: a buffer that

holds the samples of the received IF signal, a carrier

table for generating carrier replica signal, an array com-

posed of the pseudorandom noise (PRN) codes of all

tracked satellites, and an array of structures that stores the

parameters of the tracking channels. A channel structure

includes the initial IF sample offset in data buffer, d0,k, the

numbers of samples in one correlation, Nk, the initial car-

rier phase offset in carrier table, h0,k, the carrier step, Dhk,
the initial code offset in code table, c0,k, and the code step,

Dck, for a tracking channel, k. The total number of tracking

channels, Nc, is the final input parameter. The output

results of the correlation SIQ,e, SIQ,p, SIQ,l are also put into

the channel structure to have coalesced memory access.

In a CPU-based correlation process, there is a data

buffer storing the received signal, which is shared among

different tracking channels. As for a GPU-based correlation

process, the data buffer is transferred to the global memory

of a GPU, as shown in Fig. 2, where d0,k is the pointer to

the initial data offset in the data buffer and Nk is the

number of samples in one correlation, in a channel, k. The

array of PRN codes in the GPU-based correlation stores the

PRN codes for each satellite sequentially with a one-

dimensional size of
PNc�1

k¼0 clen;k as shown in Fig. 3, where

c0,k is the pointer to the initial PRN code offset in the code

table and clen,k is the length of the PRN code, Prn(k), in a

channel, k. The carrier table is a common resource for

different tracking channels, and so, it is usually initialized

and copied into the global memory of the GPU in advance.

After the data structure is chosen, the next step is to map

the data into the blocks of threads in GPU. In CUDA

programming, threads and blocks are marked by the thread

index, threadIdx, and the block index, blockIdx, which are

limited by the grid size, gridDim, and the block size,

blockDim, respectively. The variables that hold the indexes

and sizes are three-dimensional variables. However, in the

proposed design of the GPU-based parallel correlation,

only one dimension is in use. The following code snippet

presents a more clear view on the data mapping:

for (int ich = blockIdx.x; ich\ nch; ich ?= gridDim.x) {…
for (int pos = sampleBase ? threadIdx.x;

pos\ sampleEnd; pos ?= blockDim.x)

{…}}

The variable ich is used to index the tracking channel, and

the variable pos is used to index the IF samples in one

channel. The two variables, sampleBase and sampleEnd,

are used to indicate the bound [d0,k, d0,k ? Nk] of the

samples that are used in one correlation in a tracking

channel k.

The correlation needs six reductions in each block to

generate the early, prompt, and late results for both in-

phase and quadrature-phase data. Shared memory is used

for the final reduction (Harris 2007). Limited by the total

amount of shared memory per block in our device, which,

for example, is 49,152 bytes (Table 2), and the size of float

type, which is 4 bytes, then the size of one reduction array

is limited to be no greater than 49,152/(6 9 4) = 2048.

Under the assumption of a sampling rate of 9.75 MHz,

0 1 3 ...2

d0,0 ...d0,1 d0,k ... d0,Nc-1

d0,0 + N0 

d0,1 + N1 

d0,k + Nk 

d0,Nc-1 + NNc-1  

10 11 12 ... 2928 ... 9750 9751 ... 9762 ... 9780 ...

Fig. 2 Data buffer storing IF samples in the GPU

c0,0

Prn(0)

...c0,1 c0,k ... c0,Nc-1

... 0 ...00 1 ...

Prn(1) Prn(k) Prn(Nc-1)

... 0 1 ... clen,Nc-1 - 1... clen,k - 1clen,1 - 1clen,0 - 1

Fig. 3 Code table in the GPU
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2048 is smaller than the size of 1 ms IF samples. There-

fore, a FOR loop is added to accumulate the intermediate

results into the reduction arrays. This can be described as

follows:

for (int ich = blockIdx.x; ich\ nch; ich ?= gridDim.x) {…
for (int iArray = threadIdx.x; iArray\NARRAY; iArray

?= blockDim.x) {…
for (int pos = sampleBase ? iArray;

pos\ sampleEnd; pos ?= NACCUM)

{…}}}

The added variable iArray is used to index the reduction

arrays, and NARRAY is the size of one reduction array. An

analysis of how to choose an optimized value for this

variable is presented later in the following section.

The variables in the arrays stored in the shared memory

can be summed with a tree-like reduction. Harris (2007)

presents the detailed algorithm design and time complexity

analysis for the parallel reduction in CUDA. We adopt the

third version of his reduction algorithm and make some

simplifications, such as assuming that the size of the

reduction array is equal to a power of two.

The number of processing channels, Nc, and the number

of samples in each channel, Nk, are all variable numbers in

the proposed algorithm. Compared with the extant

schemes, the proposed algorithm is independent of the

GPU device, the number of tracking channels, the corre-

lation time, and the code length, which means it can be

applied on different GNSS signals.

Time complexity analysis

Assume that the number of tracking channels is Nc and the

number of IF samples in one tracking channel is Ns. In

order to simplify the analysis, the numbers of processed IF

samples in different tracking channels are assumed to be

equal, and then, the total data size is

N ¼ NcNs ð5Þ

The size of the reduction array is M. The number of active

blocks running in parallel on the GPU is set to be Pb. The

number of active threads per block running in parallel is set

to be Pt. In this analysis, P B N, Pb B Nc, Pt B NS, and

M B Ns. Therefore, the total number of the threads running

in parallel on the GPU is

P ¼ PbPt ð6Þ

The time complexity of the proposed algorithm is

O
Nc

Pb

� �
O

M

Pt

� Ns

M

� �
þ O

M

Pt

þ logM

� �� �

¼ O
Nc

Pb

� �
O

Ns

Pt

� �
þ O

M

Pt

þ logM

� �� �

¼ O
N

P

� �
þ O

Nc

Pb

� �
O

M

Pt

þ logM

� �
ð7Þ

The lowest complexity occurs when M ¼ Ns;P ¼ N;

Pb ¼ Nc, which means that the size of the reduction array is

equal to the number of IF samples in one tracking channel,

the number of threads per block is equal to the number of

samples, and the number of blocks is equal to the number

of channels. As a consequence, Eq. (7) can be manipulated

as follows:

O
N

P

� �
þ O

Nc

Pb

� �
O

M

Pt

þ logM

� �

¼ O
N

P

� �
þ O

N

P

� �
þ O

Nc

Pb

� �
O logNsð Þ

¼ O
N

P

� �
þ O

NclogNs

Pb

� �

¼ O logNsð Þ

ð8Þ

Compared with the time complexity of a CPU-based sin-

gle-instruction single-data (SISD) correlation algorithm,

which is O(N) = O(NcNs), the GPU-based correlation

algorithm significantly improves the performance from a

theoretical point of view.

Code implementation and verification

A GNSS software receiver written in C programming

language is built to implement and verify the proposed

parallel algorithm. A modified version of the open source

GNSS software receiver GNSS-SDRLIB (Suzuki and Kubo

2014) is implemented and used to provide the basic func-

tions running on the CPU. The modified version is different

from the original GNSS-SDRLIB in the following aspects:

1. The receiver functions are executed in one CPU thread

serially, which provides the benchmark for the GPU-

based correlation in performance evaluation.

2. The GPU-based parallel algorithm is implemented and

added to the modified version. GNSS-SDRLIB imple-

ments its correlation in double float precision. How-

ever, in order to maximize the performance, the GPU-

based correlation and the modified CPU-based corre-

lation are both realized in single float precision. A

macro switch is defined to change the execution mode

between the GPU-based correlation and the CPU-

based correlation.
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In order to verify the correctness of the GPU-based

correlation, the modified GNSS software receiver is oper-

ated to process 110 s IF samples with 9.75 MHz rate and

4-bit resolution. The tested signal is the GPS L1 C/A. The

hardware used in the verification test is a NVIDIA GeForce

GTX 750 Ti GPU and a quad-core 3.6 GHz Intel Core i7-

4790 CPU. Both the GPU-based and the CPU-based

algorithms are initialized with the same acquisition process

to ensure that the initial states for the two algorithms are

the same.

The GPU-based prompt correlation result, SIQ,p, and the

difference between the GPU-based and the CPU-based

correlation results in one channel are shown in Figs. 4

and 5. The decoded navigation bits in Fig. 4 indicates that

the tracking loop can work normally with the GPU-based

correlator, while there still exits some difference between

the GPU-based and the CPU-based correlation results as

shown in Fig. 5. Figure 6 shows the CN0 difference

brought by the different correlation results in GPU and

CPU. As can be seen in the figure, the CN0 difference

ranges between about ±0.3 dB.

The difference between the correlation results initially

comes from the different roundoff errors of floating point

numbers in the GPU and the CPU (Whitehead and Fit-

Florea 2011). According to the IEEE 754 standard, the total

precision of single float numbers is about seven decimal

digits. The precision limit would lead the float indexes of

the local replica code samples in CPU and GPU to diverse

as given in Table 1. The difference can change the equality

of the final correlation results only when these float indexes

are converted into different integer indexes, and these

integer indexes can refer to different code samples. The

divergence of code samples would be expanded when they

are multiplied by the product of the IF signal and the local

carrier signal, which usually ranges from several hundreds

to several thousands. The final difference of the correlation

results would then also fall into a range from zero to sev-

eral thousands as shown in Fig. 5.

Since the correlation result is used to tune the tracking

loop, the difference between the current correlation results

of GPU and CPU will influence the input data and the

output result of the next correlation process. Once a

divergence is encountered between the GPU-based and the

CPU-based correlation results, it could last afterward. The

correlation difference is in an order of 103, while the cor-

relation results are in an order of 105. The relatively small

difference should not invalidate the correctness of the

proposed GPU-based algorithm. The CN0 difference in

Fig. 6 also indicates that there is almost no sensitivity loss

due to the proposed GPU-based algorithm.

Optimization

The performance evaluation and optimization of the GPU-

based correlation implementation are carried out with

regard to the arithmetic and memory aspects. According to
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the time complexity analysis, the factors that influence the

performance of the GPU-based correlation include the

number of tracking channels, Nc, the number of IF samples

in one tracking channel, Ns, the number of active blocks

running in parallel on the GPU, Pb, and the number of

active threads running in parallel in one block, Pt.

Nc and Ns are variable input parameters of the GPU-

based correlation, while Pb and Pt reflect how effectively

the hardware is kept busy. Limited by the hardware

resource (Table 2), however, the maximum number of

active blocks, Pb,m, and the maximum number of active

threads per block, Pt,m, are values that depend on the

resource usage. The resources in use include the number of

threads per block, Pn, the number of registers per thread,

Nr, and the amount of shared memory per block, Ms. The

concept occupancy, which is the ratio of the number of

active warps per multiprocessor to the maximum number

of possible active warps, is employed as a metric for the

utilization of the hardware resource. The CUDA toolkit

provides an Excel spreadsheet called ‘‘CUDA_Occu-

pancy_Calculator.xls’’ to calculate the occupancy, with

inputs as the values Pn, Nr, Ms, as well as the input of the

GPU compute capability. It should be noted that selecting a

set of appropriate values for Pn, Nr, Ms can increase the

occupancy and may even improve the execution

performance.

The number of registers per thread, Nr, is highly related

to the algorithm design, and it is not prone to be modified

in the code implementation. The command-line option ‘‘–

ptxas options = v’’ can be used to detail the number of

registers used per thread, which is Nr = 36 here. However,

in order to achieve a 100 % occupancy, Nr is limited to be

less than the total number of registers available per block

over the maximum threads per multiprocessor (Table 2):

Nr B 65,536/2048 = 32. The simplest way to prevent the

compiler from allocating too many registers, which would

results in a low occupancy, is to use the ‘‘-maxrreg-

count = 32’’ command-line option to ensure that the

maximum number of registers allocated per thread is

smaller than 32.

Before exploring how the number of threads per block,

Pn, influences the occupancy and how the occupancy

influences the execution performance, the settings of the

values Nc, Ns, and Ms, which should be kept as constants,

are explained as follows. Ns is set to be the number of 1 ms

IF samples. As for Nc, assume that a GPU-based GNSS

software receivers allocate 30 channels to track a single-

frequency signal for each GNSS constellation and that four

constellations are considered with triple-frequency signals.

Therefore, the total number of channels needed is

Nc = 4 9 30 9 3 = 360. Since the assumed constella-

tions are not yet available, simulation is used. Noise

channels are duplicated from the normal tracking channels,

and they are added to generate simulated signals. In the

GPU-based correlation, Ms can be found from the size of

the reduction array, M: Ms = 6 9 sizeof

(float) 9 M = 24 M bytes. Since the maximum amount of

shared memory allocated per block is 49,152 bytes, then

M should be smaller than 49,152/24 = 2048. Moreover,

because M should be equal to a power of two, there are

only three candidate values for M, which are 512, 1024,

and 2048. In the optimization test for choosing the

appropriate value for Pn, M is set to be 1024, thus

Ms = 24,576 bytes. After Pn is determined, a test on how

the different values of M influence the execution perfor-

mance is carried out.

The CUDA C best practices guide (NVIDIA 2014)

suggests that experimentation is required to select the block

size, Pn. It also indicates that Pn should be a multiple of

warp size 32. An experiment is designed to search for an

appropriate value for Pn from the range [128, 1024], with a

step of 32. Although the number of blocks allocated, Pm,

will not impact the occupancy unless it is smaller than the

maximum number of active blocks, Pb,m, the experiment

still measures the processing time for 1 ms IF samples in

360 channels by varying both Pm and Pn. This is because

Pb,m is determined by Pn, Nr, Ms. Since Pn is unknown, the

low bound of Pm is still uncertain. A two-dimensional

search would provide a detailed plot on how Pm and Pn

impact the execution performance. The range for searching

Pm is [10, 1024], with a step of 1. The search range lower

bound is chosen as 10 because of the following. The

minimal number of blocks per multiprocessor, in order to

achieve 100 % occupancy, is the maximum threads per

Table 1 Divergent code indexes

Channel The first divergent

correlation (ms)

Float index

in CPU

Float index

in GPU

0 3 649.999939 650.000000

1 10 445.000092 444.999908

2 2 762.999939 763.000000

3 4 325.999939 326.000000

Table 2 Physical limits for NVIDIA GeForce GTX 750 Ti

Compute capability 5.0

Number of SMs 5

CUDA cores/SM 128

Warp size 32

Maximum block size 1024

Maximum threads per SM 2048

Maximum shared memory per block 491,52 bytes

Shared memory per SM 65,536 bytes

Registers per SM 65,536
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multiprocessor over the maximum block size (Table 2),

which is 2048/1024 = 2. Since there are five multipro-

cessors, the minimal block size should be 5 9 2 = 10. The

experiment result is shown in Fig. 7.

Two lateral views of Fig. 7 are provided in Figs. 8 and 9

to analyze the impact of the block size and the grid size

separately on the performance. From the original data,

Pm = 297 and Pn = 512 generate the best performance

with the least execution time, which is 0.880957 ms to

process 1 ms data with 360 channels and 9.75 MHz sam-

pling rate. However, the lateral view in Fig. 8 shows that if

Pn is between 512 and 768, the performance of the GPU-

based correlator keeps almost the same. When it comes to

the occupancy instead of the execution performance, there

is a reason to select 512 from the range [512, 768]. The

reason is that the CUDA occupancy calculator indicates

that 512 is the only value that can generate 100 % occu-

pancy without any additional constraints from Nr and Ms.

In fact, the execution performance at Pn = 1024, with only

two active blocks per multiprocessor, is beyond the average

because the occupancy is also 100 %. The lateral view, in

turn, illustrates that lower occupancy does not always mean

lower performance. Usually when 50 % occupancy is

reached, additional increases in occupancy will not

improve the performance.

All points with Pn = 512 are marked in red in the other

lateral view with respect to the grid size. The red points

indicate that once the blocks per grid are sufficient, the

execution performance will remain steady. Choosing a

value smaller than the maximum number of active blocks,

Pb,m = 2048/512 9 5 = 20, results in a low occupancy

and a lack of capability to cover the latency efficiently.

Since it is more flexible to choose a value for Pm, 256 is

chosen for Pm, which is not a unique number, just one to

guarantee sufficient blocks per gird.

There are only three options for the size of the reduction

array M: 512, 1024, and 2048. The corresponding values

for the amount of shared memory allocated per block Ms

are 12,288, 24,576, and 49,152 bytes, respectively. More-

over, the corresponding occupancy is 100 %, 50 %, and

25 %, respectively. This is according to the CUDA occu-

pancy calculator since Pn and Nr are already determined. In

order to choose an optimized value for Ms, the GPU-based

correlator is operated to process 1 ms IF samples with

9.75 MHz rate. With Pn and Nr determined, the number of

the processing channels, Nc, is varying in the range of [0,

1024], with a step of 1, this time, to generate numerous test

results. The measured execution time of the kernel function

in Fig. 10 shows again that occupancy higher than 50 %

will not bring in any extra performance enhancement in

this program, while occupancy lower than 50 % would

definitely degrade the efficiency. Ultimately 512 is chosen

for M since it generates 100 % occupancy.

Apart from the arithmetic optimization, the data transfer

between the host memory and the device memory should

also be considered for optimization. One significant con-

sideration for memory optimization is the coalescing

Fig. 8 Execution time measured on different grid sizes

Fig. 9 Execution time measured on different block sizes
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memory transfer. In the GPU-based correlation, the carrier

and code tables are generated and copied from the CPU

memory to the GPU memory only once. Among the rest

three input parameters, the IF samples and the number of

processing channels, Nc, are copied from the CPU memory

to the GPU memory for every correlation. Such unidi-

rectional memory transmission is unavoidable and cannot

be coalesced. Only the last parameter, which is an array of

structures storing the parameters of the channels, whose

size is proportional to the number of tracking channels Nc,

can cause bidirectional memory transmission between the

CPU and the GPU memory (load and store). The opti-

mization strategy is to copy all the parameters of the

channels in and out of the GPU memory, instead of one-

by-one channel. A comparison is made between the dif-

ferent throughputs of the coalescing memory copy and

scattering memory copy when Nc = 5, which is given in

Table 3.

The results in Table 3 are gathered by NVIDIA Visual

Profiler, which is a tool in the CUDA Toolkit to analyze the

CUDA C program. The table shows the throughput per-

formance of the coalescing memory copy is about five

times as that of the scattering memory copy. The reason is

that the load and store throughputs of both methods are far

smaller than the peak memory bandwidth, which is 8 GB/s

between the host memory and the device memory. There-

fore, coalescing memory copy can significantly expand the

transfer memory size in one load or store process, which

eventually increases the throughput.

Overall performance

An overall performance evaluation of the GPU-based

parallel correlation is conducted, which includes a com-

parison with the performance of the CPU-based serial

correlation. The GPU-based correlator is operated to pro-

cess 1 ms IF samples. The sampling rate is 9.75 MHz. The

number of the processing channels, Nc, is varying in the

range of [0, 1024], with a step of 1. Different from the test

that selects the shared memory size, which only measures

the execution time of the kernel function, this experimen-

tation measures the execution time of both the kernel

function and the memory transfer. The execution time of

the GPU-based correlation varies with the number of

tracking channels as shown in Fig. 11. A rough estimation

of how many channels the GPU-based correlation can

maintain in real time can be obtained. As shown in Fig. 11,

when the processing time, indicated by the value of the y

axis, is 1 ms, which is equal to the time required to process

1 ms IF samples in real time, the number of channels,

indicated by the value of the x axis, is roughly 330.

Seo et al. (2011) made a performance comparison

between several GPU-based GPS SDRs. A similar com-

parison is given in Table 4, where we reuse the content of

Table 1 in Seo’s paper and append information about

algorithms developed in recent years (Seo et al. 2011;

Huang et al. 2013; Park et al. 2014). The performance of

our algorithm is also described in Table 4. This comparison

is very coarse without considering the impact brought on

by different devices used in the algorithm implementations.

However, the comparison still provides an overview of the

performance difference between existing GPU-based

GNSS SDRs.

We also made experimental comparisons between the

GPU-based and the CPU-based correlations. Massive noise

channels are simulated in the CPU by running the corre-

lation of one channel many times. The comparison of the

Fig. 10 Execution time of kernel with different usages of shared

memory
Fig. 11 Overall performance of GPU-based correlation

Table 3 Throughputs of scattering and coalescing memory transfers

Throughput Load (MB/s) Store (MB/s)

Scattering memory copy 189.189 95.89

Coalescing memory copy 921.053 472.973
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execution time between the CPU-based and the GPU-based

correlations varies with the number of channels as shown

in Figs. 12 and 13, where the plot shows a huge perfor-

mance gap between the CPU and the GPU computations.

The range of the x axis is compressed from [0, 1024] to [0,

450] so that the scatter plot of the GPU performance can be

shown clearly. The other plot on acceleration rate shows

that the speedup grows when the number of channels

increases. However, the growth rate decreases gradually

until the speedup reaches a peak value at nearly 53. This

plot can also be used to check out the expected gain when

the GPU-based correlator is operated to process different

numbers of channels.

The performance speedup of the whole GNSS software

receiver, s, caused by the speedup gained from the GPU-

based correlation, sp, can be calculated by Amdahl’s law

(Tanenbaum et al. 2013):

s ¼ 1

1� rp þ rp
sp

¼ sp

sp 1� rp
� �

þ rp
ð9Þ

where rp is the fraction of the correlation computation load

out of the whole computation of the GNSS software

receiver on the CPU.

Other CUDA features

The design and implementation approach presented above

can be applied on all the CUDA-enabled GPUs. While for

the GPUs with CUDA capability greater than 3.0, there are

some new CUDA features that can be utilized.

SM 3.0 introduced the warp shuffle functions, in which

‘‘__shfl_down’’ and ‘‘__shfl_xor’’ functions can be used to

perform a reduction across 32 threads in a warp without

consuming any shared memory. The shuffle functions

exchange a variable between threads within a warp, which

has a faster transfer speed compared with that of the shared

memory. Figure 14 shows how ‘‘__shufl_down’’ function

works.

In the GPU-based correlation, a block reduction, rather

than a warp reduction, is needed. Atomic addition function

in CUDA is adopted here to guarantee that the sum of

variables in each warp is added correctly, excluding the

cache pollution brought by writing the same GPU memory

with different CUDA threads. Without storing the reduc-

tion arrays in the shared memory, the algorithm design is

Fig. 12 Performance of GPU-based and CPU-based correlations

Fig. 13 Speedup brought by the GPU-based correlation

Table 4 Comparison of some existing GPU-based SDRs

GPU CUDA capability Number of SMs Number of CUDA cores GPU-based GNSS SDRs’ development

GeForce GTX 8800 1.0 16 128 8 Channels, 40 MHz, 8-bit resolution

GeForce GTX 280 1.3 30 240 12 Channels, 8 MHz, 4-bit resolution

GeForce GTX 285 1.3 30 240 150 Channels, 5 MHz, 14-bit resolution

GeForce GTX 480 2.0 15 480 Acquisition only

GeForce GTX 480 2.0 15 480 60 Tracking channels, 40 MHz, 8-bit resolution

GeForce GTX 580 2.0 16 512 Real-time tracking of all navigation signals

GeForce GTX-Titan 3.5 14 2688 70 Tracking channels, 16.3676 MHz

GeForce GTX 750 Ti 5.0 5 640 330 Tracking channels, 19.5 MHz, 4-bit resolution

SM stream multiprocessors
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simplified into two FOR loops. Some key codes realizing

the architecture of the new design are listed below:

for (int ich = blockIdx.x; ich\ nch; ich ?= gridDim.x) {…
for (int pos = sampleBase ? threadIdx.x;

pos\ sampleEnd; pos ?=

blockDim.x) {…}

for (int offset = warpSize; offset[ 0;

offset � = 1) {

sum_I[0] ?= __shfl_down(sum_I[0], offset);

…}

if (!(threadIdx.x & 0x1f)) {

atomicAdd(d_ch[ich].I, sum_I[0]); …}

}

The usage of the atomic functions is at the cost that no

other thread can access the address until the running atomic

operation is complete. This cancels out the benefit brought

by the usage of the shuffle instructions instead of the shared

memory. Verification and performance tests are conducted

for the new design. The results indicate that there is no

significant gain in the performance. Nevertheless, using the

shuffle instructions to implement the final block reduction

can eliminate the possibility that the occupancy of the

program is limited by the usage of the shared memory.

Therefore, it is strongly recommended to use the shuffle

instructions instead of the shared memory if a GPU card

with CUDA capability[3.0 is available.

Unified memory is another new feature that can be

applied in the implementation of the GPU-based corre-

lation. It is first introduced in CUDA 6.0 and requires a

GPU card with SM 3.0 or higher, and a 64-bit host

application and operating system. The unified memory

programming provides memory management that enables

the CPU and the GPU to access the memory allocated in

the managed memory without explicit data transfer

between the host and the device memory. This would

simplify the GPU programming and avoid the perfor-

mance degradation brought by the inefficient explicit

memory transfer coded by programmers. There is a real

test on how the unified memory programming can affect

the performance of the GPU-based correlation as given in

Table 5. Even though the modified program is exempt

from explicit memory copy, the implicit memory copy

increases the execution time of the kernel function. The

overall performance does not get improved; nevertheless,

the unified memory programming is still a good way to

avoid explicit memory transfers.

The two aforementioned advanced features are only

available for certain GPU cards. In order to scale to the

future devices, they are strongly recommended to use. If

the compatibility is more important, the former design and

implementation should be adopted.

Conclusions

The GPGPU technology has been widely applied in

numerous scientific calculations, including the correlation

process in GNSS software receivers since CUDA was

released in 2006. A well-designed architecture and a deeply

optimized implementation are indispensable to exert the

full potential of a CUDA-enabled GPU. We propose a

GPU-based correlator architecture design for GNSS soft-

ware receivers. The new architecture addresses the design

of the data structures and the mechanism of mapping the

correlation process of multiple channels into blocks of

threads executed on a GPU. A time complexity analysis of

the proposed parallel algorithm is conducted, which asserts

the theoretical advantage of the GPU-based correlator over

the CPU-based one. Following the analysis, a software

prototype is established to verify the correctness and

evaluate the performance of the proposed GPU-based

correlator architecture. The tests verified the correctness of

the implementation of the GPU-based correlator. The

results also asserted the considerations on how to choose

the execution parameters and the schemes to keep a high

memory transfer throughput between the host memory and

the device memory. An overall performance evaluation,

including both the arithmetic computing and the memory

transfer, is presented after the initial code implementation

is fully optimized. The evaluation indicates that the GPU-

based correlator can maintain the correlation process of

nearly 330 tracking channels with 9.75 MHz sampling rate

and 4-bit resolution in real time. Moreover, the comparison

with the performance of the CPU-based correlator shows

that the GPU-based correlator can achieve above 50 times

performance gain at the peak. We also apply and test some

0 1 3 5 6 ...42

0 1 3 ...42 25 27 29 30 312826

25 27 29 30 312826

23 24

__shufl_down(var,2)

Fig. 14 Shuffle instruction

Table 5 Duration of kernel in unified memory

Duration (ls)

Explicit memory copy (load) 1.216

Explicit memory copy (store) 2.368

Kernel execution (explicit memory copy) 18.783

Kernel execution (implicit memory copy) 23.935
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new features in recently released CUDA-enabled GPUs.

The benefits and drawbacks of those new features are

illustrated, and some recommendations on when to adopt

those new features are provided.
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