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Abstract—This study investigates the application potential available to the system designers. Such models must reproduce
of the SAGE (space-alternating generalized expectation- jn a realistic manner the entire dispersive behavior of the
maximization) algorithm to jointly estimate the relative ,.ona04a1i0n channel, i.e., in delay, direction, Doppler, and
delay, incidence azimuth, Doppler frequency, and complex |arizati Effecti h | del elab . i
amplitude of impinging waves in mobile radio environments. PO arlz-atllon. ectl\{e C annel moae ea}.oratllon. re .Ies on
The performance’ ie., high-re50|uti0n abi|ity' accuracy, and a realistic characterization of the probablllty distribution of
convergence rate of the scheme, is assessed in synthetic anthe relevant channel parameters. This knowledge is gath-
real macro- and pico-cellular channels. The results indicate ered experimentally from comprehensive data collected during

that the scheme overcomes the resolution limitation inherent 1o g0 5jve measurement campaigns. Hence, sophisticated, ac-
classical techniques like the Fourier or beam-forming methods.

In particular, it is shown that waves which exhibit an arbitrarily ~ curate, and computationally efficient signal processing tools
small difference in azimuth can be easily separated as long asare required to extract the channel parameters of interest from
their delays or Doppler frequencies differ by a fraction of the the measurement data.

intrinsic resolution of the measurement equipment. Two waves Recently, various high resolution methods have been pro-

are claimed to be separated when the mean-squared estimation : . : :
errors (MSEE’s) of the estimates of their parameters are close posed in mobile radio to estimate some of the parameters

to the corresponding Cramér—Rao lower bounds (CRLB's) Of impinging p'_an? waves, _i-e-, th_eir_ complex amplitude,
derived in a scenario where only a single wave is impinging. relative delay, incidence azimuth, incidence elevation, and

The adverb easily means that the MSEE'’s rapidly approach the Doppler frequency. These methods can be grouped into three
CLRB's, i.e., within less than 20 iteration cycles. Convergence of the categories defined in [1]: spectral estimation, para-
of the log-likelihood sequence is achieved after approximately metric subspace-based estimation (PSBE), and deterministic
ten iteration cycles when the scheme is applied in real channels. . P - - A =
In this use, the estimated dominant waves can be related to a Parametric estimation (DPE). Worth mentioning within the
scatterer/reflector in the propagation environment. first category is the MUSIC (multiple signal classification)
The investigations demonstrate that the SAGE algorithm is a algorithm [2]. The ESPRIT (estimation of signal parameter via
powerful high-resolution tool that can be successfully applied rotational invariance techniques) [3] and Unitary ESPRIT [4]
for parameter extraction from extensive channel measurement - -
data, especially for the purpose of channel modeling. methods belong to t.he PSBE techniques. AI_I three mgnthned
methods were previously developed for azimuth estimation.
of arrival, Doppler frequency, high-resolution array signal The MUSIC algorithm was later applied to delay estima-
processing, maximum likelihood estimation, multipath channel, .thn [5]. The ESPR!T metho‘?‘ ha_s been recgntly adapt.ed for
propagation delay, radio channel measurement and estimation, joint delay and azimuth estimation [6], while the Unitary
radio propagation. ESPRIT technique has been extended to perform joint azimuth
and elevation estimation [7]. An application of the latter
to process wide-band channel measurements is presented in
] ) o [8]. Among the DPE methods, the expectation-maximization
FUTURE advanced mobile radio communication systemgn) algorithm has been used for either delay or azimuth
have to fulfill the increasing demand for transmissioBstimation [9]. The SAGE (space-alternating generalized EM)
capacity. To meet this challenge, these systems may Hyorithm, which is an extension of the EM algorithm, has been
corporate any form of diversity techniques. The optimizgyppied for joint delay and azimuth estimation in time-invariant

tion of the schemes implementing these techniques is oRl¥vironments [10] as well as for joint delay, azimuth, and

feasible provided that accurate channel models are magigypier frequency estimation in time-variant environments
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is as follows:[-]* denotes transposition ar{d -) is the scalar
product inIR*. In the sequel we shall also make use of the
notation []* and [-]% 2 []*]* for the complex conjugation
and Hermitian operators.

We implicitly make the following simplifications when we
write (1): First, the ratio of the array dimension to the velocity
of light is much smaller than the inverse of the bandwidth of
u(t) so that the propagation duration of the waves within the
array can be neglected. Second, for the sake of simplifying the
Fig. 1 Multipath propagation in mobile radio environmentsgpeed of the presentation, the waves are assumed to propagate horizonta”y_
mobile Tx, c: speed of light) This assumption proves to be realistic in macro-cells where

p p

the distance between the transmitter (Tx) and the Rx is usually
employed to describe the behavior of the SAGE algorithlarge compared to the height difference between their antennas.
in synthetic channels. When the SAGE algorithm is applied In micro- and pico-cells the incidence elevation becomes
real channels its performance assessment must rely on otignificant and introduces an error in the azimuth estimation
criteria such as convergence of the log-likelihood sequendkjt is discarded [8]. This effect is especially pronounced
goodness-of-fit between the power profiles calculated from timdaen linear antenna arrays are used. For this reason a circular
measurement data and those reconstructed based on the chagiay has instead been employed in the investigated pico-
nel estimates, and the correspondence between the estimagldilar environment. For such arrays the error in the azimuth
waves and the propagation environment. estimation which results from discarding the elevation can

The paper is organized as follows. The underlying signbk shown to be negligible small as long as the elevation is
model is outlined in Section Il. The description of the SAGEonfined within+40°. Since the Rx and Tx are in line of
algorithm is sketched in Section Ill. Section IV is devotedight and their antennas are at about the same height in the
to some relevant issues related to the implementation of tinwestigated environment the relevant impinging waves at the
SAGE algorithm. The results concerning the performance Bk are very likely to exhibit an incidence elevation within this

the scheme are presented in Sections V and VI. range. Thus, discarding the elevation has no noticeable impact
on the azimuth estimates. An extension of the model to include
Il. SIGNAL MODEL the elevation as well is presented in [12].

The received signal vectdr () 2 Yi(®),...,Yu(®)]" at

The transmitted signal(¢) consists of a periodically re-
gnak(z) P y the output of the antenna array reads

peated burst signal(t): w(t) = X2 a(t —iT,). The burst

signal is of the forma(t) = K= a, p(t — kT,), where L N,

[ag, ...,ax—1] and p(t)( ()jenotef_r%specii(vely, tr];()a (possibly Y(t) = Z s(t; 6¢) + \/;N(t)' (2)

complex) sounding sequence of length and the shaping =t

pulse whose duratioff}, is related to7, according to7, = |n this expressionV(t) EN [NL(1),...,Na(8)]T denotes a

KT, The sounding signak(t) has powerF,. standardM-D vector-valued complex white Gaussian noise,
The receiver (Rx) is equipped with an antenna array cope Np() = Nog(t) + JNms(t), m = 1,..., M, where

sisting of M sensors located at, ...,y € R? with respect Nig(t), Nis(t). ..., Nam(t), Ny (t) are independent real

to an arbitrary reference point. As illustrated in Fig. 1, it iero-mean white Gaussian noise processes with unit spectral
assumed in the underlying channel model that a finite numigsight. Moreover N, is a positive constant. According to the

L of specular plane waves are impinging at the Rx locatioghove definition the noise is spatially independent. To keep a
The contribution of theth wave to thel/ baseband signals atcompact notation we also define

the output of the array can be expressed in vector notation as

A
s(t;00) 2 [s1(t;00), ..., sp(t;00)]" 0 = ;S(t;w) ©
= c(pe) oy exp{g2mrpttu(t — ) @ N
wheref = [64,...,0L].
where 6, 2 [7¢, Pe, ve, ] 1S the vector containing the pa-
rameters of the/th wave. The wave is characterized by its 1ll. EM-BASED ESTIMATION OF SUPERIMPOSEDSIGNALS
relative delayr,, incidence azimuthp,, Doppler frequency
v¢, and complex amplituder,. The M-dimensional {/-D) A. Maximum Likelihood Estimation

vector-valued functionc(¢) 2 [ci(¢)....,cn(¢)]" is the  The problem at hand is the estimation of the numbesf
steering vector of the array. Its components are given kyaves as well as their parameter vectérs= [7e, Pe, ve, a,

em () 2 (@) exp{22m A He(@), mm) } With X, (@), fn(¢) £ = 1,...,L. The estimation ofL is not addressed in the
denoting the wavelength, the unit vectodiRf pointing toward paper. This parameter is fixed to a value large enough to
the direction determined by, and the complex electric field capture all the dominant impinging waves. Classical informa-
pattern of themth sensor, respectively. The meaning of théon theoretic methods for model selection like Akaike’s and
vector operators arising in the above mathematical expressiétissanen’s criteria [13] can be used to estimate
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The received signaY'(¢) is observed over a window con-
sisting of I regularly spaced time intervals of duratidf
each. The spacing between the centers of two consecutive
observation intervals is denoted @y, wherel; > T,. The
observation duration and the observation span &g and
(I — 1)ITy + T,, respectively. The reason why the received
signal is not continuously observed, i.d; = T, is that g,
the absolute Doppler frequency of the impinging waves is
considerably smaller than the inverse of the burst duration
T,. Hence, selectindg!’; > 1, makes it possible to increase
the observation span, which leads to an enhancement of
the Doppler resolution, while limiting the growth of the
observation duration and therefore of the amount of measurggl 2. Relation between the complete and incomplete data.
data to be stored. By the Sampling Theoréyff¥; must be

larger than twice the maximum occurring Doppler frequenc

while I must be confined in such a way that the observatiglﬁ%bs:g?g)le)thdeatiﬁailciézzl psriol;I:m t_oé esglc:?itlr:g dsgpe;m;r?sed
span is smaller than the time interval during which the? : gnalsit; f) P yap

: . T(H‘ the additive noise, i.e.,
parameters of the waves remain approximately constant. The
BeNo

observation window is expressed with respect to its center o}( )
gravity asD,, = Uj_, [(i—((1 +1)/2) Ty — (T./2), (i—((I + ¢ 2
D/2)T; + (1o/2)). constitute a natural set of complete data [9] (see Fig. 2).

The Io_g-likelihood function of9_ = [61,...,01] given an Here, Ny(t),...,N.(t) are independent standard/-D
observationt' () = y(t) over D, is [14] complex white Gaussian noises. The nonnegative parameters

A J

Path #1

h J

Path #¢

A

Path #L

113

s(t;00) +

N(t), ¢=1,....L (6)

A1 Bi,...,Br satisfy L 3, = 1 so that the se{ /BN (),
Aby) = N [2/ R{s (' 0)u(t)} at ...,\//J_LNL(t)}fornﬁsla decomposition a¥ (¢). The received
Pe signalY (¢) is identified with the incomplete data. It is related
- / |s(t; )| dt’} (4) to the complete data according Y(t) = SZ_; X,(¢).
Do To figure out the rationale leading to the EM algorithm,
Here R{-},3{-}, and|| - || denote, respectively, the real part'et us assume for the moment that the complete data can

the imaginary part, and the norm of the argument. Notice iHag observed. SipceYl (#),..., Xy (¢) are independent, the
givend the only random element in (2) is the white noisét). componentsXy ,_E ;é £ are |rrel_evant [18] for the est|ma_t|on
The maximum likelihood estimate (MLE) df is a value of of 8,. The log-likelihood function o_feé_ for the opservauon
this vector for which the functiofl — A(6;y) is maximum  X¢(t) = @¢(?) over D, has a form similar to that in (4)

~ / 1
Our(y) € arg max{A(6;y)}. (5) Abp;20) = —— [2/ R{H(H; 00)ze(t)} dt’
7 BeNo D,
The calculation 0¥y (y) is computationally prohibitive due — / l|s(t';60)||% at'|. (7)
to the high dimension of for large L. and because no closed Do

formula exists which expresses the global maxima of thghe MLE of 6, for the observationX,(t) = z.(t) is given
nonlinear functioné — A(6;y). Since the values of the as (f,)y.(z,) € argmaxg, {A(6;2,)}. Since X, (t) is not
complex amplitudes maximizing\(¢;y) can be expressedgbservable one can try to estimate it based on the observation
in closed form as a function of the other parameters, t}}e(t) = y(t) of the incomplete data and a previous estindite
computation of the MLE of is a3L-D nonlinear optimization of ¢. A natural estimate of{,(#) is its conditional expectation
procedure. given Y (¢) = y(t) and assuming = 6’

B. The EM-Algorithm e (t;é’) SE XDl (¢=1....L) (@)

The EM algorithm [15], [16], has been formulated byyhereF,[] denotes expectation assuming the parameter value
Dempsteret al.[17] as a unifying iterative method for solvingy The wave parameter vectéy can then be re-estimated by

the ML estimation problem in situations where a part of th@omputing its MLE based on the observati§ip(t) = &(t; é/)
observations are missing or censored. In [9] the EM algorithm

has been applied to the problem of estimating superimposed 6/ = (9}) (ﬁ:[ (t;é’)) (¢=1,...,L). (9

signals in white Gaussian noise. In this subsection we shall ML

sketch the rationales, notions, and main properties of the ENMe computations of (8) and (9) are referred to as the Expec-

algorithm that are needed for the presentation of the SAd#&tion (E) step and the Maximization (M) step, respectively,

algorithm in Section I1I-C. of the EM algorithm. For any initial valué(0), a sequence
The derivation of the EM algorithm relies on the twoof estimates{f(y)} 2 {6(): p = 0,1,...} is generated by

key notions of the complete (unobservable) and incompléteratively carrying out these two steps, where at each iteration
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E-step M-step
/—/% ——
i (40() | MEE bi(u+1)
| single wave
(10) & (11)
Signal . ’ .
iy ge(t; ) | MLE fe(u+1)
y(t) 0——— decomposition > single wave
(13) (10) & (11)
21t é(l‘)) MLE oy, (p+1)
¥ single wave
(10) & (1) M)
6 +1)
; 6 flu+1
6(0) o O W) nep+1 e+ COn}\ll.(’,rgcr})cc
 » achieved?

)

Fig. 3. Signal flow graph of the EM algorithm.

1 the identifications#’ = é(y) and 6/ = 6,(pn+ 1), £ = where

1,...,L, are made. The signal flow graph (SFG) of the EM

algorithm is depicted in Fig. 3. Inspection of this figure shows 2(T, ¢, vixy) =
that the EM algorithm allows the splitting of the optimization
problem required to jointly estimaté superimposed waves
into L separate optimization problems for estimating a single
impinging wave.

The EM algorithm has the remarkable property that for any i
generated Asequenc{gﬁ(u)}, the sequence of log-likelihood M () (t) dt. (12)
values{A(#(x);y)} cannot decrease (monotonicity property)

[17]. Moreover the sequence converges to a stationary polotice that [|c(¢)||* = T3, [f.(¢)[>. A possible SFG
provided the iteration functior(6;,8’) — A(6s;%.(¢;67)) for computing the functiore(r, ¢, v; x,) is given in Fig. 4.
which is needed to compute (9) satisfies some weak regulatgcording to (10) and (11) the MLE's of the parameters of
conditions [15]. In practice, the iteration process is stoppeie ¢th wave are obtained by simultaneously varyinge,

as soon as the distance between the parameter estimaigby within their respective range until the magnitude of the
returned by the EM algorithm at two consecutive iteratiogignal at the output of the SFG is maximum. The resulting
steps is below a predefined threshold or when the sequeggsle then equalgr,, dr, v )ai (), while (G )n(x¢) is the
{A(0(1);y)} has stabilized. output signal normalized by a system-dependent factor.

1) ML Estimation of a Single Impinging WavéVe now  2) Estimation of the Complete Datafhe estimate 2 (¢;
derive the MLE (6)mr.(z¢). Upon insertion of (3) and (1) §') of the complete data(¢) in (8) is expressed as [9]
in (7) it can be shown that the value of that maximizes
A(B¢;2,) can be derived in a closed form as a function . .
of [re,¢e,v¢] [11]. Substitution of this value fora, in Ze t;9') IS(t;92)+/3e
A(6¢; z¢) yields the following procedure for the computation

w (¥ — 1) exp{—g27t’}

4

H(p)ze(t)) at’

/ u* (' — 1) exp{—72mvt’}
D

i

Ao

[
]~

o -

L
u(t) = 3 sl éw]. (13)
=1

of (eé)ML,(“)' ) L . The first term is the contribution of thé&h impinging wave
MLE’s of the parameters of a single impinging wave:  ,qqmingg, = @,. The expression within the brackets is an

estimate of the noisQ/ Yo N(t) based on the hypothesis that
(rg,'@; z/[)m (z¢) = arg [Infx1{|Z(T’ b vz} (10) © = ¢'. Since the calculation of the right-hand terms in (11)

TPV and (13) is simple, the complexity of the EM algorithmlis
(&)wr(ze) = i 1 times the complexity of the three-dimensional (3-D) optimiza-
’ I||e((pe)mr (ze))||?To P, tion procedure (10). Apart from the constrabdf_, 8, = 1,

.7((7 ?1/ ) (2e); ) (11) the nonnegative coefficients are free parameters that should
ATeRe T et be selected to maximize the convergence rate of the EM
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/DQ () dt’ e

Fig. 4. A possible implementation of(r, ¢, v;z¢) in (12).

algorithm and to possibly avoid convergence to an unwantedgiven in Fig. 5. Thedl-step is still the ML procedure for

stationary point [9]. a single wave, which is applied to the estimate Xf(t)
given in (13) with /3, = 1. Notice that at theuth iteration
C. The SAGE Algorithm step the parameters of the wa¥e= ; mod(L) + 1 are re-

The SAGE algorithm [19] is a twofold extension of theestimated. We define an iteration cycle of the SAGE algorithm
asL consecutive iteration steps for updating the parameter

an EM iteration to re-estimate not necessarily all but only gotimates of all waves once. The computational complexity of

subset of the components 6fwhile keeping the estimates "€ @terat?on step of the EM algorithm is identical to that of
of the other components fixed. Admissible hidden data aPS8€ iteration cycle of the SAGE algorithm. _
associated which each of these parameter subsets. Data ard further reduce thg complexny.of the SAGE al_go_nthm
admissible for a given subset if they are complete for thflScribed above we aim at replacing the 3-D optimization
subset under the hypothesis that the componerttbefonging procedure (10) to compute the MLE of th? para}meters of
to the complement of this subset are known. Second, i€ Single wave by three separate one-dimensional (1-D)
notion of complete data is generalized in the sense that lpr)lré?cedures, where each parame_te_r is estimated individually.
mapping from the complete data space to the incomplete ddfys can also_ pe formulated within the SAGE_framework
space may be random rather than deterministic as originafy further splitting each subset, £ = 1...L, into the
considered in [17]. The selection of admissible data guarantéB€e Subsetdr, ac}, {¢¢, ac}, and {1, ac}. The random
that the SAGE algorithm retains the monotonicity propert&rocess (6) is still admissible for each of these subsets, and
of the EM algorithm [19]. The SAGE algorithm is actually e conditional Fisher information is still maximized with

a grouped coordinate ascent method. Faster convergencefor~ 1- Concatenation of the three SAGE iterations for re-

a correspondingly lower complexity is the advantage of tr?estlmgtlng the pairs in the three subsets above yields the
SAGE algorithm compared to the EM algorithm [19]. following ‘_dea“”g procedl_Jre.

The details conceming the application of the SAGE al- Coordinate-wise updating procedure of the parameter es-
gorithm to the resolution of electromagnetic waves can tiEnates of one wave:
found in [10] and [11]. To avoid the introduction of additional »
symbolic notations we shall in this section sometimes identify Te =arg mf“x{
the vectorsd, and 8 with the set of their components. In the "1 )
problem of estimating superimposed signals, natural parameter e = arg mfx{
subsets comprise all the parameters of the individual signals, TR
i.e., arefy,..., 0. Infact this selection is well suited 86,(t) Ve = g mﬁlx{
in (6) is admissible fof,. Moreover, it can be seen thdf = 1 & — 7(
maximizes the conditional Fisher information & (t) given ¢ Ie($DIPT. P
Y (t) = y(¢). Maximizing this matrix proves to maximize
the asymptotic convergence rate of the EM algorithm [17This updating procedure can be performed by applying the
Moreover, empirical evidence shows that this choice also lea8BG in Fig. 4 to the signat,(¢;¢'). The updated estimates
to a fast convergence of the algorithm already in the early, ¢/, andi// are obtained by successively varyings, and
iteration steps [19]. The SFG of the resulting SAGE algorithm until the magnitude of the signal at the output of the SFG

EM algorithm. First, each iteration of the SAGE algorithm i

Z(T, (/A)’[, Dy; T (t; 6’ ) ‘}

(30,000 (1:0))|}

G dtsle)))
;0

i se69)). a9
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E-step M-step
Signal MLE single wave
. (10) & (11) ;
y(t) O——n] decomposition I‘(t’e(l‘)): or Oe(p +1)

(13) with B, =1 Coordinate-
wise updating (14)

b | |0 -’-[1;:/ Ou ()
¢ = pmod(L) 0(p+1)
6(0) o— o \9 g1 Convergence
- achieved?
™ i No

éSAGE (y)

Fig. 5. Signal flow graph of the SAGE algorithm.

is maximum. The updated amplitude estiméatgis then the in (14) are replaced by
output signal normalized by the system-dependent factor. M I

The SFG of the SAGE algorithm which results from thery’ = arg max { >N
above particular choice of parameter subsets and their admissi- m=1 i=1

/ W = Pt 0) dt
D;

)

ble data is also that depicted in Fig. 5 with thestep given by (16)
(14). Obviously, this algorithm reduces to a coordinate ascent I . 2
method in this case. ¢y = arg max {Z / Wt =7 ) (B)ae(t;6) }
i=1 1/ Di
17)
IV. IMPLEMENTATION ISSUES during the initialization cycle. At step € {—(L—1),...,0},
the parameter estimates of wave= L + p are initialized
andf(p—1)=1[0; —(L-1),. N 1({ = L —14),0,...,0].

A. Simplification for Low Doppler Frequencies Inserting@(u 1) in (13) yields the estimate, (¢; 9(u 1))

In the mobile environment the magnitude of the Dopplqj( t) — zé, 2 st éé,(g/ — L)) of the hidden dataX,(t) that
frequency of the impinging waves is much smaller thifi.. s ysed in the modified\/-step to calculatef,(z). Thus,
Thus, the phase ter@w,¢ in (1) can be approximated by asjgnal estimates of the waves whose parameter estimates have
constant term according @t ~ 2n(i — (({ +1)/2))»¢Ty  already been initialized are subtracted from the observed signal
over each observation interva); = (i = (({ +1)/2))Ty — y(t). Such a technique is commonly referred to as successive
(T,/2), 6 — (T +1)/2))Ty + (1,/2)), i = 1,...,I, of D,. interference cancellation.

Inserting the right-hand term above in (1) yields the following In the second method all initial estimates of the delays are

approximation fors(t; 6;) over D; first computed by using the MUSIC algorithm proposed in
[5]. An initialization cycle of the SAGE algorithm is then

I+1 carried out to compute the initial estimate of the remaining

5(t;6¢) ~2 c(pe) v exp {JZW <L - T)WTf}u(t —17¢),  wave parameters. During this initialization cycle the updating

procedure (14) is modified as follows: The first maximization

teDi (15) procedure is discarded while the second one is replaced by
(17) z4(¢;8"). Hence, being replaced hy¢), no cancellation
B. Initialization of the SAGE Algorithm is carried out in this case.

Two methods are proposed to initialize the SAGE algorithm. V. P Sy o
The first one can be included in SFG the SAGE algorithm - PERFORMANCE IN SYNTHETIC CHANNELS

as follows: One “initialization” CyCle with the iteration StepA_ Crangr—Rao Lower Bound for the Estimation bi\Waves

4 ranging In {—(_L—}), -0} is perform_ed starting _W'_th For the subsequent investigation it is worth considering the
the pre-initial settingd(—L) = [0,...,0]. Since noa priori real 5L.- D vector

knowledge about the phase of the complex amplitudes |s N N
available noncoherent estimation of the delays and azimuths is < 3 = o}, Rfos), S}, ..., Sar,
performed. To this aim, the first two maximization procedures Tlyeo s T @1y o L V1, o L] (18)
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instead of¢. The information inequality for the covariancefunction of«(¢). To avoid aliasing, all signals are bandlimited

matrix of any unbiased estimafe reads [20] to 1/2T, prior to sampling at the raté/T, = N,/T,, where
. T, . N, denotes the number of samples per pulse duration. It is
Eq [(Q - Q) (Q - Q)} > FHQ) (19)  shown in Appendix B that we can rewrite (22) according to

where thes L x 5L positive definite real matri¥’(2) is the so- . g a9
called Fisher information matrix (FIM) d®. If Qk is unbiased e () = 27%{@ @aéa['p(n — )
its mean-square estimation error (MSEE) is lower-bounded as

estaron € Gt} 25)

MSEE(() 2 Eq [(Qk - Qk)Q]

> [F—l(g)] . 2 CRLB(Q). (20) Wwith £ (MIT,P,/No). The indexe¥ and ¢ are obtained

/ : _ _
The diagonal elementt'—1(§2)]x of F~1(Q) is referred to from & and & according tof = (k — 1) mod(L) + 1 and

A " , ¢ = (K —1) mod(L) + 1, respectively.
as the CRLB oft%. In addition, V\f define the root MSEE The subsequent investigations focus on uniform linear ar-

(RMSEE) of {; as RMSEE({%) = \/MSEE(). When rays with\/2 spaced omnidirectional sensors, i&.(#) = 1,

the estimator is biased, its MSEE is bounded from beloy — 1 ... M. The reference point of the array is selected to

according to [21] coincide with its center of gravity. Therefore, the diagonal
EQ[(Qk _ Qkﬂ > B, + [(I+ Vab(2)) elements of the off-diagonal submatrices in (23) vanish

F—I(Q) (I + VQb(Q))T] . (21) |/€ - /{}/| =nlL, ne {1, 2,3,4} - Fkk/(Q) =0. (26)

whereb(Q) £ Eq[(] — Q denotes the bias d® and Vb(?)  B. Special Case—Estimation of One Wave

is the gradient ofb(§2). The sign of this gradient and the It follows from (26) thatF(£2) is diagonal in the cask = 1,

magnitude of the bias itself determine whether the bound (2&8 that analvtic expressions for the CRLB's can easilv be
is larger or smaller than that in (20). Sink?) is not known .04 (seey,t;\ppexn%ix é) v

explicitly, (21) cannot be computed. However we shall regaraE

the CRLB of an arbitrary estimate (20) as a benchmark to CRLB(¢) = 1 6 27)
which its MSEE is compared. Yo w2sin®(¢) (M2 —1)
We now deriveCRLB(£2;) in (20). It is shown in Appendix 1 3
A that the elements of'(2) can be expressed as CRLB(v) = Yo 27r2TJ%(]2 —1) (28)
2 o 9 11
(0 = 2 _Y Hi.Q oY A% CRLB(7) = — —5— (29)
P () N 9?{/])0 o, (t'; ) an,s(t, )dt} Yo 822
(22) CRLB<ﬁ> = CRLB <m{|i}>
67 67
The following partition of the FIM inL x L submatrices will o
be useful for the subsequent treatment + CRLB <3{m}> =3 (30)
Frp()) Frs(Q) Frr(Q) Frg(Q) Fri(Q) A _
FE(Q) Fys(Q) Fur(Q) Fsu(Q) Fu(Q)| ThetermB, = (1/77,)\/(N,/2) (1 + (1/K)) is the Gabor
F(Q) = [Fg (@) FL(Q) F(Q) Fu(Q) F.(Q) bandwidtt of u(t). We have redefined 2 1, ¢ 2 ¢1, v 2 1,
F%(Q) F‘%&(Q) F%(Q) F¢T¢(Q) Fiy () anda 2 «1. All CRLB’s above are inversely proportional to
Iy, (@) F5, () Fo(Q) F@,(Q) FW(Q()23) Yo 2 MIK N,~r which can be viewed as the signal-to-noise

ratio (SNR) at the output of the correlator in Fig. 4. Notice that
the SNR of the wave at the input of each antenna branch is
v 2 P,|af?/(No/T,). Both CRLB(¢) andCRLB(») depend

on M and ! in the same manner. Furthermoi@RLB(¢)

By analogy withc(¢) we defined(v) £ [dy(v), ..., di(1)]T
where d;(v) 2 exp{s2r(i — (I + 1/2)vT}} [cf. (15)].

Moreover is inversely proportional tasin®(¢), i.e., a linear array is
a1 oo N g more sensitive to signals impinging nearby perpendicular to
plr) = TP, /0 't = r)a(t)) dt the array broadside. Increasing the inter¥al between two
oA 1 g - consecutive observations increases the temporal observation
(e, 9) = M (@)e() span and therefore decreaseRLB(v).
N T .
) = fd (v)d(v) (24) C. Special Case—Estimation of Two Waves with Equal Power

are the delay, azimuth, and Doppler frequency correlationThe resolution of conventional techniques for delay,
function of the measurement equipment, respectively. Naagimuth, and Doppler frequency estimation like cross-
that p(r) < 1, |¢(¢. ) < (1/M)|e(8)] |le(d)||, and correlation, Fourier, and beam-forming methods is limited

In(v, ) | < 1 with equality if T = 0, ¢ = '(7)7 and v = ’7] 1The Gabor bandwidth of a signal is defined to be the root second central
respectively. Furthermore(r) is the periodic autocorrelation moment of its power spectrum [22]. Here, it is assumed to be finite.



FLEURY et al. CHANNEL PARAMETER ESTIMATION USING THE SAGE ALGORITHM 441

oyl

CRLB

RMSEE,
8\

N o 1] il

0.6

1.
Ag/g, °
==== /CRLB(o/]a1]), %:O,anown

0—X0 Simulated RMSEE((&I)SAGE/|a1|), v — 0, y known

Ve

==+ /CRLB(a1/[u]), %% =13, v estimated

3 Simulated RMSEE((&])SAGE/|a1|) &2 = 1 v estimated

> Ve

Fig. 6. /CRLB(a1/]a[) and RMSEE(41)sace/|air|) as a function of A7, Ag], with Av as a parameter.

by the intrinsic resolution of the measurement equipment. Thepinging at the Rx location with azimuthg; = 90° +
resolution in delay, azimuth, and Doppler frequency is definéch¢/2) and ¢ = 90° — (A¢p/2), respectively. The waves
to be the half-width of the main lobe of the magnitude of thgiffer by the parametera ¢, Ar £ 1 — 79, and Ay 2 v —14.

corresponding correlation function in (24). For a unifornThe complex amplitudes are selected s = —0.9511 —
linear array, these half-widths are given by 70.3090 and ., = 0.7431 + 70.6691, respectively. Moreover
it is assumed that the sounding sequence has unit power, i.e.,
=T, = 360°  ond w— & 31) Pu =1 so that the SNR per wave at each antenna branch
M ITy equalsyr = —20 dB. The other parameters are set as described
in Section V-D.

respectively. The values af. andv. are calculated for the  The square root of the CRLB's of the parameters of wave #1
broadside direction and for zero Doppler frequency, respggas been evaluated numerically as a functiomef A¢, and
tively. Two waves are called well separable or resolvable wheQy, for the above scenario. Two different situations have been

the condition [21] investigated. In the first one the Doppler frequencies are known
to be zero. As shown in Figs. 6 and,/CRLB(«; /|ay|) and
Ar>71. Oof Ap>¢p. or Av>v, (32) /CRLB(¢;) significantly deviate from their lower bounds
CRLB(a/[a]) = 0.02551 and \/CRLB(4) = 0.104°,
is satisfied. respectively, forA7 < 0.27. and A¢ < ¢.. They remain be-

The CRLB'’s result by inverting?'(§?) for L = 2. Each of low 0.3 and 0.7, respectively, providedAr > 0.27, or
these CRLB’s are lower-bounded by the corresponding CRLB¢ > 0.4¢. and diverge toward infinity whepAr, A¢] tends
in (27)—(30), i.e., when each wave is considered separatédyzero. In the second situation considered, the two waves
[20]. Furthermore the former CRLB’s are close to the lattexxhibit distinct unknown Doppler frequencies. It appears from
when the two waves are well separable. Figs. 6 and 7 that a difference akv = 1./2 improves
The following “two-wave” scenario is used as a basithe resolution in delay and azimuth: In this case, we have

for assessing the resolution ability of algorithms for wave/CRLB(cy)/|o;| <0.2 and /CRLB(¢;1) <0.21° for any
parameter estimationL = 2 waves with equal power arevalue of the paiffAr, A¢]. It can be observed that as soon



442 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 17, NO. 3, MARCH 1999

CRLB []
80

RMSEE,

==== /CRLB(¢1), ﬁ—::O,uknown

O—0O Simulated RMSEE((&l)SAGE), A» — 0, y known

===+ JORLB(¢1), 2% =1, v estimated

Ve

»(} Simulated RMSEE((él)SAGE) $f = 5, v estimated

3 Tbe

Fig. 7. \/CRLB(¢:1) and RMSEE(¢1)saqe) as a function of A7, A¢|, with Av as a parameter.

as At > 0.47., the CRLB’s are close to the correspondinground zero. Further simulation results not being reported here
CRLB’s obtained in the single-wave scenario. This means thatlicate that the parameter estimates are biased which, in
the waves can be resolved irrespectively of their separationview of (21), leads to the aforementioned deviation. These
azimuth and Doppler frequency in this case. The CRLB's f@imulations also reveal that when the wave separation is
ap and¢; as a function ofA¢, Av] are depicted in Figs. 8 decreased the bias can be compensated for by decreasing
and 9, respectively. Note that the maxima\@CRLB(¢,) as the quantization precision of the parameter estimates. From
a function of A¢ for fixed valuesAr (Fig. 7) or Av (Fig. 9) Figs. 6-9 we can conclude that if eithexr X v./2, or

~

depend on the phase difference betwegrand «. A¢p Z ¢c/2, or AT Z 7./5, the RMSEE’s are close to
_ the values ofy/CRLB for the single-wave scenario and,
D. RMSEE of the Parameter Estimates consequently, that the waves are resolvable.

The RMSEE'’s of the parameter estimates have been asThe convergence rate of the SAGE algorithm is illustrated
sessed by means of Monte Carlo simulations in the tvi@ Figs. 10 and 11, where the transient behavior of the RM-
situations described in Section V-C. We use a linear antenREE'S is reported for the two investigated situations. Varying
array which comprised/ = 11 equidistant elements with a[A7, A¢] on the line Ar/7. + A¢/p. = 0.4, we observe
spacing of\/2. The pseudo-noise (PN) sounding sequendbat the convergence rate increases for decreasing values
consists ofK’ = 127 rectangular pulses(t) with 7, = 10 ns. 0of A¢ due to the simultaneous increase &f~. The rate
Hence, T, = 1.27 us. The parameter estimates are quantizetcrease is pronounced for increasing valueshef As can
to a precision ofr./10 = 1,,/10 = 1 ns, ¢../500 = 0.0208°, be seen from the figures, for resolvable waves the RMSEE’s
and »./500 = 0.1632 Hz, respectively. The parameter estiof the parameter estimates approatGLRB after roughly 20
mates are initialized by applying the successive cancellatidaration cycles. In this case the two waves are easily resolvable
scheme. After the initialization, which is labeled as the zeroth the sense that the required effort to compute the estimates
cycle, the scheme performs 100 iteration cycles. with an accuracy close to the corresponding CRLB is low.

The RMSEE’s of(&1)sagr/| o | and(&l)SAGE are shown Some RMSEE sequences are observed to converge to a value
in Figs. 6-9. While the RMSEE’s are close {t6CRLB for lower than the correspondingCRLB. This behavior results
well resolvable waves, they deviate significantly from thehen the estimates are significantly biased for the reason
latter when the tripld AT, A¢p, Av] lies in a certain domain mentioned in the previous paragraph.
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Fig. 8. \/CRLB(a:/]a[) and RMSEE(é&1)sacr/|ai|) as a function offA¢, Av], with A7 as a parameter.

VI. PERFORMANCE IN REAL CHANNELS ¢ An alternative criterion for assessing the accuracy of
the SAGE algorithm is to relate the waves estimated by
means of the scheme to some scatterers in the investigated

] propagation environment. Based on the estimates of the
The performance of the SAGE algorithm has also been gelay, azimuth, and Doppler frequency of an impinging

tested in real conditions by applying it to data obtained during \yave we can reconstruct its path between the Tx and
various measurement campaigns in pico- and macro-cellular e Ry while assuming single scattering/reflection in the

environments. It is a nontrivial task to verify whether the  55pagation environment. The applicability of this method
SAGE algorithm actually returns correct channel estimates in 5 |imited. however. as experimental evidence indicates

such a ;ituation because the real channel is unknown and the 5t 4 nonnegligible part of the impinging waves reaches
underlying model assumption that specular plane waves are e Rx by means of multiple scattering/reflection.

impinging at the Rx does not usually hold.  The convergence rate of the SAGE algorithm as well as
Three different criteria are proposed to evaluate the perfor- 1o humber of iteration cycles required until the scheme

mance of the SAGE algorithm in real channels [11]. has converged are assessed by monitoring the sequence
* First, the power delay and azimuth profiles are computed  of |og-likelihood vaIues{A(é(u);y)}.

from the actual signals measured at the output of the
antenna branches. The power azimuth profile is calculatBe Time-Invariant Channels
by using the conventional beam-forming method [23] The first measurement campaign was conducted in a pico-
while the power delay profile is obtained by averagingellular environment by using the wide-band channel sounder
the squared magnitude of the signals correlator/matcheelveloped at the Communication Technology Laboratory of
filter output. Second, the same profiles are recalculatdte Swiss Federal Institute of Technology, Zurich [24]. The
usings(t;éSAGE). Notice that all of these profiles embodyequipment transmits a carrier at the frequency of 1.98 GHz
the delay or azimuth response of the measurement setoqmdulated with a PN sequence of periid= 255. The chip
A comparison of the measurement- and reconstructiogdration is7;, = 10 ns so thatl, = KT, = 2.55 pus.
based profiles allows an indirect verification whether the The measurements were performed in a courtyard of size 9
scheme returns meaningful channel estimates. m x 17 m located inside a building (see Fig. 12). Both Tx and

A. Performance Criteria
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Fig. 9. \/CRLB(¢:1) and RMSEE(¢1)saqe) as a function of{A¢, Av], with A7 as a parameter.

Rx were fixed, and no object was moving in the surroundingise LOS path and we have Sét calc 2 #1. The relative

so that the environment is time-invariant. A line-of-sightielay errors|(7; — 7¢caic)/(7¢ — 71)|, £ € {2,...,4}, range
(LOS) path exists between the Tx and the Rx which are locatktdm 9-16%. The cause of the large deviations could not
9.8 m apart from each other. The signal at the correlator outng definitely identified. The other waves estimated by the
of the Rx has been recorded at ten locations on a circle ands#tGE algorithm could not be related to the environment. Their
its center. The distance between two neighboring locations anmuth is spread homogeneously ovér, [860°). Considering

the circle is 0.8. The 11 recorded signals are identified withhe estimated delays, some of the waves probably originate
those present at the output of a correlator bank connectedr@m reflectors/scatterers located inside the building situated to
a virtual antenna array witll/ = 11 sensors located at thethe left of the yard. These waves experience little attenuation
measurement positions. The selected array geometry allotlgen they propagate through the large windows in the wall
an unambiguous azimuth estimation in the full rangé, [0fronting the yard.

360°). An industrial robot has been used to place the receivigg Time-variant Channels

antenna at the desired locations. The quantization precision ofl. .
. ) he second measurement campaign was conducted by us-
the SAGE algorithm is 1 ns and 0.05'he number of waves to . paig y

b imated i b — 20. Th ived sianal is ob ng the stand-alone testbed developed within the TSUNAMI
€ estimate ',S se o gregewe signal IS observeq, project at the Center for PersonKommunikation, Aalborg
overl = 1 period. The initialization is performed by means o

; . ) . : niversity [26]. The testbed consists of a receiving base
the successive cancellation scheme described in Section Vg8, (BS) equipped with an eight-element phased antenna

The estimated delay-azimuth spread function of the channgl,, ang a transmitting mobile station (MS) equipped with
[25] is gepmted in Fig. 13. This function is defined to bgn ompj-directional antenna. It is designed according to the
hr, ¢) = Bf_, (T —70)8(¢ — ¢¢), whered(-) denotes the DCS1800 (Digital Cellular System 1800) standard [27] and is
Dirac distribution. In addition to the LOS wave, three otheimplemented for up-link only. The eight signals at the array
waves can be related to a reflector/scatterer from which theytput are sampled at the rat¢7, with 7, = 0.923 us, and
originate. Table | contains the estimated parameter valuessedred on a hard disk for every TDMA-frame, .6} = 4.6
the four waves as well as the corresponding delay differengss, for off-line processing. The measurement campaign was
Tecale Calculated from the reconstructed paths in Fig. 12onducted in downtown Aalborg, Denmark, with the MS and
Notice that/ = 1 is the index of the wave propagating alondBS located as illustrated in Fig. 14.
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Fig. 10. (a) RMSEE4,/|a1|) and (b) RMSEE®, ) versus the number of Fig. 11. (a) RMSEEA /|1 ]) and (b) RMSEEg, ) versus the number of
iteration cycles for different values ¢fA7, A¢] and Av = 0. iteration cycles for different values ¢fA7, A¢] and Av/v. = 0.5.

An example of the estimated azimuth-Doppler spread func-|t is quite difficult to relate most of the individual com-
tion h(¢, /) = S, 6,6(¢— $e)8(v — 1) and delay-azimuth ponents among the cluster around®2® an object in the
spread function is shown in Fig. 15. In this particular situatioenvironment. The strong wave with azimuth°2@elay 67,
the azimuth toward the Tx was 22It is observed that most and Doppler frequency 0 Hz, originates from a reflection on a
of the received power arrives from that direction, so thdarge building front (see Fig. 14). The SAGE algorithm does
the angular spread of the channel is relatively small. Thidso detect a few impinging waves at approximatelg0°.
observation is consistent with previous experimental resulifie one with delay equal t67 is a reflection from a high
reported in [28] and [29] which show that the angular spredwtel building. The azimuth and delay profiles obtained from
is usually less than As predicted by the simulation resultsthe measured and reconstructed array out signals is reported
reported in Section V, the SAGE algorithm is capable aoh Fig. 16. There is a good match between both types of
resolving the waves with almost identical azimuths as longpeiofiles for signal components higher thar20 dB. Below
their Doppler frequencies or relative delays differ sufficiently—20 dB the fit is less accurate due to receiver noise as well
As shown in Fig. 1 the Doppler frequency of a wave impingings model imperfections in the reproduction of the response of
on the BS depends on the azimuth between the directiontbé measurement system.
movement and the first object with which the wave interacts. The convergence behavior of the SAGE algorithm is il-
The same figure points out that many waves with distintttstrated in Fig. 17 for some measurements in both types
Doppler frequencies might be impinging on the BS from twof investigated environments. Each sequer{@(é(u);y)}
nearby directions which cannot be distinguished from eaah normalized byA(é(20);y}. The latter figure provides an
other. estimate of the limit toward which the sequence converges.
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Fig. 14. Map of central Aalborg. The thick broken line denotes the route
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plained by the fact that the cancellation of already estimated
waves in the received signglt) increases the accuracy with

The log-likelihood sequences significantly increase within thghich the remaining waves can be estimated. Nevertheless,
first iteration cycles and have almost converged after t#he convergence rate of the sequences is almost identical after

iteration cycles.

one iteration cycle regardless of the initialization procedure.

The value of A(A(0);4)/A(A(20);y) is larger when the This behavior indicates that the SAGE algorithm exhibits some
successive cancellation scheme is used. This might be exbustness against the initialization methods. The convergence
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0 be achieved when the MSEE’s approach the corresponding
» CRLB's.

When the SAGE algorithm is used in real environments,
the log-likelihood sequence essentially converges within ten
iteration cycles. Various validation techniques indicate that the
SAGE algorithm returns consistent estimates.

Due to its appealing properties, the SAGE algorithm proves
to be a powerful tool for off-line processing of extensive

| ‘ channel measurement data especially for channel modeling
purposes [30], [11]. The presented experimental results show
in particular that it can be successfully applied to resolve
waves with arbitrarily close incidence azimuths, a situation
frequently encountered at the base stations in macro-cellular
environments. Other studies have revealed that the SAGE al-
gorithm is also a promising candidate for channel estimation in
direct-sequence code-division multiple access communication
systems [31]-[33].

Amplitude [dB]

Amplitude [dB]
[}

estimation problem, where we have replacedy its real-
valued version? defined in (18). The elements of the FIM
are defined afkk/(Q) = —EQ[(a/an) (8/8Qk1)A(Q,Y)],
k, k' = 1,...,5L, [34], [35]. Using the identity2R(a'b) =
a'b + btla in (4), the second order derivative in the previous
expectation is given by

2
. APPENDIX A
DERIVATION OF (22)
) l ‘ We start with the log-likelihood function (4) for the given
/

7] 7]
— A D:
Fig. 15. (a) Example of an estimated azimuth-Doppler spread function 1 a g
and (b) an estimated delay-azimuth spread function in a macro-cellular No {/ 0% 00 SH(t/%Q) (y(t/) - S(t/%Q)) dt’
environment(7, = 0.923 us). 0 L/D, k K
7] 7]

[ ) = s g o st i
rate of the SAGE algorithm is slightly slower when it is applied Do 9 9 b M
to measurement data than when it is used with synthetic data. — / — st Q) s(t';Q) dt
This behavior is also expected since, in real environments, p, 9 vy
the impinging waves might embody a diffusely scattered com- _ d S(H:Q) d s(t';Q) dt’
ponent so that the underlying model assumption of specular D, O o '

incident waves does not hold.
Equation (22) follows immediately by applying again the
above identity to the last two terms and by noting that

VII. CONCLUSIONS the expectation of the first two terms vanish because of
The performance of the SAGE algorithm applied for sepda[Y (t) — s(t; Q)] = 0.

rating impinging waves with respect to their relative delay,

incidence azimuth, and Doppler frequency in mobile radio

envirp_nments has been_inves_tigatgd in syr_lthetic_ and real DERIVATION OF (25)

conditions. Monte Carlo simulations in synthetic environments . A

demonstrate the high resolution ability of the scheme: it Let us definem(t; Q) = [s*(t — (I —1)/2)T5;Q), s*(t -

is capable of easily separating waves as soon as one(@f—3)/2)T;Q),...,s"(t4 (I —1)/2)Ty; Q)] Equation

their three parameters differ by more than roughly half tH&2) can then be rewritten according to

intrinsic resolution of the measurement equipment. Two waves

are assumed to be separated when the MSEE’'s of their 2 T./2 g

parameter estimates are close to the corresponding CRLB’s P () = _m{/T ) o0,

obtained when each wave is considered separately. The term «/

easily means that the SAGE algorithm converges rapidly, i.e.,

within less than 20 iteration cycles. Convergence is meant to

APPENDIX B

m'(t'; Q)

0 /. /
o s e } (33)
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The MI-D vector-valued functionm(¢;$2) can be expressed components of the submatrik,, (€2) in (23) are given by
in the compact notation
; (Euie(®) = 20 ajawptre = 70)(n )
m(t;Q) =Y awu(t — 7o)d(ve) @ (o) (34) g o
=1

B T n(ve, l/é/)}. (35)
where® denotes the Kronecker product. Notice that we also “ ) “
make use of (1) and (3) to obtain (34). Then, (25) results fyPr the casd. = 1, we havel = /" = 1 so that (35) reduces to

i i i i i i iti H_ g 4
inserting (34) in (33) and invoking the identitiés © b) (Fy)1a(Q) = 2,”042%{_ 2w, ) }

all ® b and (CL1 X bl)H(CLQ X bg) = (CL{{CLQ) X (b{{bl) dv o/
o 2 I 2
APPENDIX C _ 2lef g, 3 Edi(u)
DERIVATION OF THE CRLB's IN (27)—(30) 1 — ov
In the casel. = 1, it follows from (26) that all nondiagonal |o[2872T2 7 I11)\2
elements of the FIM vanish. Henc€RLB(€2;) is obtained _ At Ay Z <L - L)
by inverting the elementy;(2) of F(). We first derive 1 i=1 2

CRLB(») in (28). The proof is analogous to that given in _2 272072 _ 1)
[36] for CRLB(). It can be easily shown from (25) that the N '
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The last term results from the identi/_, 2 = I(1+1) (2[+

(1]

1)/6 and noting thatyo = ||?y.
Invoking (25) again, we can show that the components of

the submatrix(F, . )¢ (€2) take the form

Identity (29) follows from (36) and(d?/dr?)p(7)|,=0 =
—(27B,)?, where B, is the Gabor bandwidth [22] ofi(t).

(12]

99
(97'4 (97'4/

R plre = 12) s

e, ¢ )nve, ver) } (36) 4
[19]
[16]

[17]

The proof of (30) is trivial.
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