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Abstract—This study investigates the application potential
of the SAGE (space-alternating generalized expectation-
maximization) algorithm to jointly estimate the relative
delay, incidence azimuth, Doppler frequency, and complex
amplitude of impinging waves in mobile radio environments.
The performance, i.e., high-resolution ability, accuracy, and
convergence rate of the scheme, is assessed in synthetic and
real macro- and pico-cellular channels. The results indicate
that the scheme overcomes the resolution limitation inherent to
classical techniques like the Fourier or beam-forming methods.
In particular, it is shown that waves which exhibit an arbitrarily
small difference in azimuth can be easily separated as long as
their delays or Doppler frequencies differ by a fraction of the
intrinsic resolution of the measurement equipment. Two waves
are claimed to be separated when the mean-squared estimation
errors (MSEE’s) of the estimates of their parameters are close
to the corresponding Cramér–Rao lower bounds (CRLB’s)
derived in a scenario where only a single wave is impinging.
The adverb easily means that the MSEE’s rapidly approach the
CLRB’s, i.e., within less than 20 iteration cycles. Convergence
of the log-likelihood sequence is achieved after approximately
ten iteration cycles when the scheme is applied in real channels.
In this use, the estimated dominant waves can be related to a
scatterer/reflector in the propagation environment.

The investigations demonstrate that the SAGE algorithm is a
powerful high-resolution tool that can be successfully applied
for parameter extraction from extensive channel measurement
data, especially for the purpose of channel modeling.

Index Terms—Antenna arrays, Cramér–Rao bound, direction
of arrival, Doppler frequency, high-resolution array signal
processing, maximum likelihood estimation, multipath channel,
propagation delay, radio channel measurement and estimation,
radio propagation.

I. INTRODUCTION

FUTURE advanced mobile radio communication systems
have to fulfill the increasing demand for transmission

capacity. To meet this challenge, these systems may in-
corporate any form of diversity techniques. The optimiza-
tion of the schemes implementing these techniques is only
feasible provided that accurate channel models are made
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available to the system designers. Such models must reproduce
in a realistic manner the entire dispersive behavior of the
propagation channel, i.e., in delay, direction, Doppler, and
polarization. Effective channel model elaboration relies on
a realistic characterization of the probability distribution of
the relevant channel parameters. This knowledge is gath-
ered experimentally from comprehensive data collected during
extensive measurement campaigns. Hence, sophisticated, ac-
curate, and computationally efficient signal processing tools
are required to extract the channel parameters of interest from
the measurement data.

Recently, various high resolution methods have been pro-
posed in mobile radio to estimate some of the parameters
of impinging plane waves, i.e., their complex amplitude,
relative delay, incidence azimuth, incidence elevation, and
Doppler frequency. These methods can be grouped into three
of the categories defined in [1]: spectral estimation, para-
metric subspace-based estimation (PSBE), and deterministic
parametric estimation (DPE). Worth mentioning within the
first category is the MUSIC (multiple signal classification)
algorithm [2]. The ESPRIT (estimation of signal parameter via
rotational invariance techniques) [3] and Unitary ESPRIT [4]
methods belong to the PSBE techniques. All three mentioned
methods were previously developed for azimuth estimation.
The MUSIC algorithm was later applied to delay estima-
tion [5]. The ESPRIT method has been recently adapted for
joint delay and azimuth estimation [6], while the Unitary
ESPRIT technique has been extended to perform joint azimuth
and elevation estimation [7]. An application of the latter
to process wide-band channel measurements is presented in
[8]. Among the DPE methods, the expectation-maximization
(EM) algorithm has been used for either delay or azimuth
estimation [9]. The SAGE (space-alternating generalized EM)
algorithm, which is an extension of the EM algorithm, has been
applied for joint delay and azimuth estimation in time-invariant
environments [10] as well as for joint delay, azimuth, and
Doppler frequency estimation in time-variant environments
[11]. A recent application of this scheme for the estimation
of the delay, azimuth, and elevation is presented in [12].

In this paper, we present results of a detailed study of
the performance of the SAGE algorithm described in [10]
and [11]. The resolution ability, accuracy, and convergence
rate of the scheme are assessed in both synthetic and real
macro- and pico-cellular channels. Classical concepts from
estimation theory like the root-mean-square estimation error
(RMSEE) and the Craḿer–Rao lower bound (CRLB) are
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Fig. 1. Multipath propagation in mobile radio environments (v: speed of the
mobile Tx, c: speed of light).

employed to describe the behavior of the SAGE algorithm
in synthetic channels. When the SAGE algorithm is applied in
real channels its performance assessment must rely on other
criteria such as convergence of the log-likelihood sequence,
goodness-of-fit between the power profiles calculated from the
measurement data and those reconstructed based on the chan-
nel estimates, and the correspondence between the estimated
waves and the propagation environment.

The paper is organized as follows. The underlying signal
model is outlined in Section II. The description of the SAGE
algorithm is sketched in Section III. Section IV is devoted
to some relevant issues related to the implementation of the
SAGE algorithm. The results concerning the performance of
the scheme are presented in Sections V and VI.

II. SIGNAL MODEL

The transmitted signal consists of a periodically re-
peated burst signal The burst
signal is of the form , where

and denote, respectively, the (possibly
complex) sounding sequence of length and the shaping
pulse whose duration is related to according to

The sounding signal has power
The receiver (Rx) is equipped with an antenna array con-

sisting of sensors located at with respect
to an arbitrary reference point. As illustrated in Fig. 1, it is
assumed in the underlying channel model that a finite number

of specular plane waves are impinging at the Rx location.
The contribution of theth wave to the baseband signals at
the output of the array can be expressed in vector notation as

(1)

where is the vector containing the pa-
rameters of the th wave. The wave is characterized by its
relative delay incidence azimuth Doppler frequency

and complex amplitude The -dimensional ( -D)
vector-valued function is the
steering vector of the array. Its components are given by

with
denoting the wavelength, the unit vector in pointing toward
the direction determined by and the complex electric field
pattern of the th sensor, respectively. The meaning of the
vector operators arising in the above mathematical expressions

is as follows: denotes transposition and is the scalar
product in In the sequel we shall also make use of the

notation and for the complex conjugation
and Hermitian operators.

We implicitly make the following simplifications when we
write (1): First, the ratio of the array dimension to the velocity
of light is much smaller than the inverse of the bandwidth of

so that the propagation duration of the waves within the
array can be neglected. Second, for the sake of simplifying the
presentation, the waves are assumed to propagate horizontally.
This assumption proves to be realistic in macro-cells where
the distance between the transmitter (Tx) and the Rx is usually
large compared to the height difference between their antennas.
In micro- and pico-cells the incidence elevation becomes
significant and introduces an error in the azimuth estimation
if it is discarded [8]. This effect is especially pronounced
when linear antenna arrays are used. For this reason a circular
array has instead been employed in the investigated pico-
cellular environment. For such arrays the error in the azimuth
estimation which results from discarding the elevation can
be shown to be negligible small as long as the elevation is
confined within 40 Since the Rx and Tx are in line of
sight and their antennas are at about the same height in the
investigated environment the relevant impinging waves at the
Rx are very likely to exhibit an incidence elevation within this
range. Thus, discarding the elevation has no noticeable impact
on the azimuth estimates. An extension of the model to include
the elevation as well is presented in [12].

The received signal vector at
the output of the antenna array reads

(2)

In this expression denotes a
standard -D vector-valued complex white Gaussian noise,
i.e., where

are independent real
zero-mean white Gaussian noise processes with unit spectral
height. Moreover, is a positive constant. According to the
above definition the noise is spatially independent. To keep a
compact notation we also define

(3)

where

III. EM-B ASED ESTIMATION OF SUPERIMPOSEDSIGNALS

A. Maximum Likelihood Estimation

The problem at hand is the estimation of the numberof
waves as well as their parameter vectors

The estimation of is not addressed in the
paper. This parameter is fixed to a value large enough to
capture all the dominant impinging waves. Classical informa-
tion theoretic methods for model selection like Akaike’s and
Rissanen’s criteria [13] can be used to estimate
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The received signal is observed over a window con-
sisting of regularly spaced time intervals of duration
each. The spacing between the centers of two consecutive
observation intervals is denoted by where The
observation duration and the observation span are and

respectively. The reason why the received
signal is not continuously observed, i.e., is that
the absolute Doppler frequency of the impinging waves is
considerably smaller than the inverse of the burst duration

Hence, selecting makes it possible to increase
the observation span, which leads to an enhancement of
the Doppler resolution, while limiting the growth of the
observation duration and therefore of the amount of measured
data to be stored. By the Sampling Theorem must be
larger than twice the maximum occurring Doppler frequency,
while must be confined in such a way that the observation
span is smaller than the time interval during which the
parameters of the waves remain approximately constant. The
observation window is expressed with respect to its center of
gravity as

The log-likelihood function of given an
observation over is [14]

(4)

Here and denote, respectively, the real part,
the imaginary part, and the norm of the argument. Notice that
given the only random element in (2) is the white noise .
The maximum likelihood estimate (MLE) of is a value of
this vector for which the function is maximum

(5)

The calculation of is computationally prohibitive due
to the high dimension of for large and because no closed
formula exists which expresses the global maxima of the
nonlinear function Since the values of the
complex amplitudes maximizing can be expressed
in closed form as a function of the other parameters, the
computation of the MLE of is a -D nonlinear optimization
procedure.

B. The EM-Algorithm

The EM algorithm [15], [16], has been formulated by
Dempsteret al. [17] as a unifying iterative method for solving
the ML estimation problem in situations where a part of the
observations are missing or censored. In [9] the EM algorithm
has been applied to the problem of estimating superimposed
signals in white Gaussian noise. In this subsection we shall
sketch the rationales, notions, and main properties of the EM
algorithm that are needed for the presentation of the SAGE
algorithm in Section III-C.

The derivation of the EM algorithm relies on the two
key notions of the complete (unobservable) and incomplete

Fig. 2. Relation between the complete and incomplete data.

(observable) data. In the problem of estimating superimposed
signals (2), the individual signals corrupted by a part
of the additive noise, i.e.,

(6)

constitute a natural set of complete data [9] (see Fig. 2).
Here, are independent standard -D
complex white Gaussian noises. The nonnegative parameters

satisfy so that the set
forms a decomposition of . The received

signal is identified with the incomplete data. It is related
to the complete data according to

To figure out the rationale leading to the EM algorithm,
let us assume for the moment that the complete data can
be observed. Since are independent, the
components are irrelevant [18] for the estimation
of . The log-likelihood function of for the observation

over has a form similar to that in (4)

(7)

The MLE of for the observation is given
as . Since is not
observable one can try to estimate it based on the observation

of the incomplete data and a previous estimate
of A natural estimate of is its conditional expectation
given and assuming

(8)

where denotes expectation assuming the parameter value
The wave parameter vector can then be re-estimated by

computing its MLE based on the observation

(9)

The computations of (8) and (9) are referred to as the Expec-
tation (E) step and the Maximization (M) step, respectively,
of the EM algorithm. For any initial value a sequence

of estimates is generated by
iteratively carrying out these two steps, where at each iteration
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Fig. 3. Signal flow graph of the EM algorithm.

the identifications and
are made. The signal flow graph (SFG) of the EM

algorithm is depicted in Fig. 3. Inspection of this figure shows
that the EM algorithm allows the splitting of the optimization
problem required to jointly estimate superimposed waves
into separate optimization problems for estimating a single
impinging wave.

The EM algorithm has the remarkable property that for any
generated sequence the sequence of log-likelihood
values cannot decrease (monotonicity property)
[17]. Moreover the sequence converges to a stationary point
provided the iteration function
which is needed to compute (9) satisfies some weak regularity
conditions [15]. In practice, the iteration process is stopped
as soon as the distance between the parameter estimates
returned by the EM algorithm at two consecutive iteration
steps is below a predefined threshold or when the sequence

has stabilized.
1) ML Estimation of a Single Impinging Wave:We now

derive the MLE Upon insertion of (3) and (1)
in (7) it can be shown that the value of that maximizes

can be derived in a closed form as a function
of [11]. Substitution of this value for in

yields the following procedure for the computation
of .

MLE’s of the parameters of a single impinging wave:

(10)

(11)

where

(12)

Notice that A possible SFG
for computing the function is given in Fig. 4.
According to (10) and (11) the MLE’s of the parameters of
the th wave are obtained by simultaneously varying
and within their respective range until the magnitude of the
signal at the output of the SFG is maximum. The resulting
triple then equals while is the
output signal normalized by a system-dependent factor.

2) Estimation of the Complete Data:The estimate
of the complete data in (8) is expressed as [9]

(13)

The first term is the contribution of theth impinging wave
assuming The expression within the brackets is an

estimate of the noise based on the hypothesis that

Since the calculation of the right-hand terms in (11)
and (13) is simple, the complexity of the EM algorithm is
times the complexity of the three-dimensional (3-D) optimiza-
tion procedure (10). Apart from the constraint
the nonnegative coefficients are free parameters that should
be selected to maximize the convergence rate of the EM
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Fig. 4. A possible implementation ofz(�; �; �;x`) in (12).

algorithm and to possibly avoid convergence to an unwanted
stationary point [9].

C. The SAGE Algorithm

The SAGE algorithm [19] is a twofold extension of the
EM algorithm. First, each iteration of the SAGE algorithm is
an EM iteration to re-estimate not necessarily all but only a
subset of the components of while keeping the estimates
of the other components fixed. Admissible hidden data are
associated which each of these parameter subsets. Data are
admissible for a given subset if they are complete for this
subset under the hypothesis that the components ofbelonging
to the complement of this subset are known. Second, the
notion of complete data is generalized in the sense that the
mapping from the complete data space to the incomplete data
space may be random rather than deterministic as originally
considered in [17]. The selection of admissible data guarantees
that the SAGE algorithm retains the monotonicity property
of the EM algorithm [19]. The SAGE algorithm is actually
a grouped coordinate ascent method. Faster convergence for
a correspondingly lower complexity is the advantage of the
SAGE algorithm compared to the EM algorithm [19].

The details concerning the application of the SAGE al-
gorithm to the resolution of electromagnetic waves can be
found in [10] and [11]. To avoid the introduction of additional
symbolic notations we shall in this section sometimes identify
the vectors and with the set of their components. In the
problem of estimating superimposed signals, natural parameter
subsets comprise all the parameters of the individual signals,
i.e., are In fact this selection is well suited as
in (6) is admissible for Moreover, it can be seen that
maximizes the conditional Fisher information of given

Maximizing this matrix proves to maximize
the asymptotic convergence rate of the EM algorithm [17].
Moreover, empirical evidence shows that this choice also leads
to a fast convergence of the algorithm already in the early
iteration steps [19]. The SFG of the resulting SAGE algorithm

is given in Fig. 5. The -step is still the ML procedure for
a single wave, which is applied to the estimate of
given in (13) with Notice that at the th iteration
step the parameters of the wave are re-
estimated. We define an iteration cycle of the SAGE algorithm
as consecutive iteration steps for updating the parameter
estimates of all waves once. The computational complexity of
one iteration step of the EM algorithm is identical to that of
one iteration cycle of the SAGE algorithm.

To further reduce the complexity of the SAGE algorithm
described above we aim at replacing the 3-D optimization
procedure (10) to compute the MLE of the parameters of
one single wave by three separate one-dimensional (1-D)
procedures, where each parameter is estimated individually.
This can also be formulated within the SAGE framework
by further splitting each subset into the
three subsets and The random
process (6) is still admissible for each of these subsets, and
the conditional Fisher information is still maximized with

Concatenation of the three SAGE iterations for re-
estimating the pairs in the three subsets above yields the
following updating procedure.

Coordinate-wise updating procedure of the parameter es-
timates of one wave:

(14)

This updating procedure can be performed by applying the
SFG in Fig. 4 to the signal The updated estimates

and are obtained by successively varying and
until the magnitude of the signal at the output of the SFG
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Fig. 5. Signal flow graph of the SAGE algorithm.

is maximum. The updated amplitude estimate is then the
output signal normalized by the system-dependent factor.

The SFG of the SAGE algorithm which results from the
above particular choice of parameter subsets and their admissi-
ble data is also that depicted in Fig. 5 with the-step given by
(14). Obviously, this algorithm reduces to a coordinate ascent
method in this case.

IV. I MPLEMENTATION ISSUES

A. Simplification for Low Doppler Frequencies

In the mobile environment the magnitude of the Doppler
frequency of the impinging waves is much smaller than
Thus, the phase term in (1) can be approximated by a
constant term according to

over each observation interval
of

Inserting the right-hand term above in (1) yields the following
approximation for over

(15)

B. Initialization of the SAGE Algorithm

Two methods are proposed to initialize the SAGE algorithm.
The first one can be included in SFG the SAGE algorithm
as follows: One “initialization” cycle with the iteration step

ranging in is performed starting with
the pre-initial setting Since noa priori
knowledge about the phase of the complex amplitudes is
available noncoherent estimation of the delays and azimuths is
performed. To this aim, the first two maximization procedures

in (14) are replaced by

(16)

(17)

during the initialization cycle. At step
the parameter estimates of wave are initialized
and
Inserting in (13) yields the estimate

of the hidden data that
is used in the modified -step to calculate Thus,
signal estimates of the waves whose parameter estimates have
already been initialized are subtracted from the observed signal

. Such a technique is commonly referred to as successive
interference cancellation.

In the second method all initial estimates of the delays are
first computed by using the MUSIC algorithm proposed in
[5]. An initialization cycle of the SAGE algorithm is then
carried out to compute the initial estimate of the remaining
wave parameters. During this initialization cycle the updating
procedure (14) is modified as follows: The first maximization
procedure is discarded while the second one is replaced by
(17) . Hence, being replaced by , no cancellation
is carried out in this case.

V. PERFORMANCE IN SYNTHETIC CHANNELS

A. Cramér–Rao Lower Bound for the Estimation ofWaves

For the subsequent investigation it is worth considering the
real -D vector

(18)
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instead of The information inequality for the covariance
matrix of any unbiased estimate reads [20]

(19)

where the positive definite real matrix is the so-
called Fisher information matrix (FIM) of If is unbiased
its mean-square estimation error (MSEE) is lower-bounded as

(20)

The diagonal element of is referred to
as the CRLB of . In addition, we define the root MSEE

(RMSEE) of as When
the estimator is biased, its MSEE is bounded from below
according to [21]

(21)

where denotes the bias of and
is the gradient of The sign of this gradient and the
magnitude of the bias itself determine whether the bound (21)
is larger or smaller than that in (20). Since is not known
explicitly, (21) cannot be computed. However we shall regard
the CRLB of an arbitrary estimate (20) as a benchmark to
which its MSEE is compared.

We now derive in (20). It is shown in Appendix
A that the elements of can be expressed as

(22)

The following partition of the FIM in submatrices will
be useful for the subsequent treatment

(23)

By analogy with we define

where [cf. (15)].
Moreover

(24)

are the delay, azimuth, and Doppler frequency correlation
function of the measurement equipment, respectively. Note
that and

with equality if and
respectively. Furthermore, is the periodic autocorrelation

function of To avoid aliasing, all signals are bandlimited
to prior to sampling at the rate where

denotes the number of samples per pulse duration. It is
shown in Appendix B that we can rewrite (22) according to

(25)

with The indexes and are obtained
from and according to and

respectively.
The subsequent investigations focus on uniform linear ar-

rays with spaced omnidirectional sensors, i.e.,
The reference point of the array is selected to

coincide with its center of gravity. Therefore, the diagonal
elements of the off-diagonal submatrices in (23) vanish

(26)

B. Special Case—Estimation of One Wave

It follows from (26) that is diagonal in the case
so that analytic expressions for the CRLB’s can easily be
derived (see Appendix C)

(27)

(28)

(29)

(30)

The term is the Gabor

bandwidth1 of We have redefined

and All CRLB’s above are inversely proportional to
which can be viewed as the signal-to-noise

ratio (SNR) at the output of the correlator in Fig. 4. Notice that
the SNR of the wave at the input of each antenna branch is

Both and depend
on and in the same manner. Furthermore,
is inversely proportional to i.e., a linear array is
more sensitive to signals impinging nearby perpendicular to
the array broadside. Increasing the interval between two
consecutive observations increases the temporal observation
span and therefore decreases

C. Special Case—Estimation of Two Waves with Equal Power

The resolution of conventional techniques for delay,
azimuth, and Doppler frequency estimation like cross-
correlation, Fourier, and beam-forming methods is limited

1The Gabor bandwidth of a signal is defined to be the root second central
moment of its power spectrum [22]. Here, it is assumed to be finite.
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Fig. 6. CRLB(�1=j�1j) and RMSEE((�̂1)SAGE=j�1j) as a function of[��;��]; with �� as a parameter.

by the intrinsic resolution of the measurement equipment. The
resolution in delay, azimuth, and Doppler frequency is defined
to be the half-width of the main lobe of the magnitude of the
corresponding correlation function in (24). For a uniform
linear array, these half-widths are given by

and (31)

respectively. The values of and are calculated for the
broadside direction and for zero Doppler frequency, respec-
tively. Two waves are called well separable or resolvable when
the condition [21]

or or (32)

is satisfied.
The CRLB’s result by inverting for Each of

these CRLB’s are lower-bounded by the corresponding CRLB
in (27)–(30), i.e., when each wave is considered separately
[20]. Furthermore the former CRLB’s are close to the latter
when the two waves are well separable.

The following “two-wave” scenario is used as a basis
for assessing the resolution ability of algorithms for wave
parameter estimation: waves with equal power are

impinging at the Rx location with azimuths
and respectively. The waves

differ by the parameters , and
The complex amplitudes are selected as

and respectively. Moreover
it is assumed that the sounding sequence has unit power, i.e.,

so that the SNR per wave at each antenna branch
equals dB. The other parameters are set as described
in Section V-D.

The square root of the CRLB’s of the parameters of wave #1
has been evaluated numerically as a function of and

for the above scenario. Two different situations have been
investigated. In the first one the Doppler frequencies are known
to be zero. As shown in Figs. 6 and 7 and

significantly deviate from their lower bounds
and

respectively, for and They remain be-
low 0.3 and 0.7 respectively, provided or

and diverge toward infinity when tends
to zero. In the second situation considered, the two waves
exhibit distinct unknown Doppler frequencies. It appears from
Figs. 6 and 7 that a difference of improves
the resolution in delay and azimuth: In this case, we have

and for any
value of the pair It can be observed that as soon
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Fig. 7. CRLB(�1) and RMSEE((�̂1)SAGE) as a function of[��;��]; with �� as a parameter.

as the CRLB’s are close to the corresponding
CRLB’s obtained in the single-wave scenario. This means that
the waves can be resolved irrespectively of their separation in
azimuth and Doppler frequency in this case. The CRLB’s for

and as a function of are depicted in Figs. 8
and 9, respectively. Note that the maxima of as
a function of for fixed values (Fig. 7) or (Fig. 9)
depend on the phase difference betweenand

D. RMSEE of the Parameter Estimates

The RMSEE’s of the parameter estimates have been as-
sessed by means of Monte Carlo simulations in the two
situations described in Section V-C. We use a linear antenna
array which comprises equidistant elements with a
spacing of The pseudo-noise (PN) sounding sequence
consists of rectangular pulses with ns.
Hence, s The parameter estimates are quantized
to a precision of ns,
and Hz, respectively. The parameter esti-
mates are initialized by applying the successive cancellation
scheme. After the initialization, which is labeled as the zeroth
cycle, the scheme performs 100 iteration cycles.

The RMSEE’s of and are shown
in Figs. 6–9. While the RMSEE’s are close to for
well resolvable waves, they deviate significantly from the
latter when the triple lies in a certain domain

around zero. Further simulation results not being reported here
indicate that the parameter estimates are biased which, in
view of (21), leads to the aforementioned deviation. These
simulations also reveal that when the wave separation is
decreased the bias can be compensated for by decreasing
the quantization precision of the parameter estimates. From
Figs. 6–9 we can conclude that if either , or

, or , the RMSEE’s are close to
the values of for the single-wave scenario and,
consequently, that the waves are resolvable.

The convergence rate of the SAGE algorithm is illustrated
in Figs. 10 and 11, where the transient behavior of the RM-
SEE’s is reported for the two investigated situations. Varying

on the line we observe
that the convergence rate increases for decreasing values
of due to the simultaneous increase of The rate
increase is pronounced for increasing values of As can
be seen from the figures, for resolvable waves the RMSEE’s
of the parameter estimates approach after roughly 20
iteration cycles. In this case the two waves are easily resolvable
in the sense that the required effort to compute the estimates
with an accuracy close to the corresponding CRLB is low.
Some RMSEE sequences are observed to converge to a value
lower than the corresponding This behavior results
when the estimates are significantly biased for the reason
mentioned in the previous paragraph.
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Fig. 8. CRLB(�1=j�1j) and RMSEE((�̂1)SAGE=j�1j) as a function of[��;��]; with �� as a parameter.

VI. PERFORMANCE IN REAL CHANNELS

A. Performance Criteria

The performance of the SAGE algorithm has also been
tested in real conditions by applying it to data obtained during
various measurement campaigns in pico- and macro-cellular
environments. It is a nontrivial task to verify whether the
SAGE algorithm actually returns correct channel estimates in
such a situation because the real channel is unknown and the
underlying model assumption that specular plane waves are
impinging at the Rx does not usually hold.

Three different criteria are proposed to evaluate the perfor-
mance of the SAGE algorithm in real channels [11].

• First, the power delay and azimuth profiles are computed
from the actual signals measured at the output of the
antenna branches. The power azimuth profile is calculated
by using the conventional beam-forming method [23]
while the power delay profile is obtained by averaging
the squared magnitude of the signals correlator/matched
filter output. Second, the same profiles are recalculated
using Notice that all of these profiles embody
the delay or azimuth response of the measurement setup.
A comparison of the measurement- and reconstruction-
based profiles allows an indirect verification whether the
scheme returns meaningful channel estimates.

• An alternative criterion for assessing the accuracy of
the SAGE algorithm is to relate the waves estimated by
means of the scheme to some scatterers in the investigated
propagation environment. Based on the estimates of the
delay, azimuth, and Doppler frequency of an impinging
wave, we can reconstruct its path between the Tx and
the Rx while assuming single scattering/reflection in the
propagation environment. The applicability of this method
is limited, however, as experimental evidence indicates
that a nonnegligible part of the impinging waves reaches
the Rx by means of multiple scattering/reflection.

• The convergence rate of the SAGE algorithm as well as
the number of iteration cycles required until the scheme
has converged are assessed by monitoring the sequence
of log-likelihood values

B. Time-Invariant Channels

The first measurement campaign was conducted in a pico-
cellular environment by using the wide-band channel sounder
developed at the Communication Technology Laboratory of
the Swiss Federal Institute of Technology, Zurich [24]. The
equipment transmits a carrier at the frequency of 1.98 GHz
modulated with a PN sequence of period The chip
duration is ns so that s.

The measurements were performed in a courtyard of size 9
m 17 m located inside a building (see Fig. 12). Both Tx and
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Fig. 9. CRLB(�1) and RMSEE((�̂1)SAGE) as a function of[��;��]; with �� as a parameter.

Rx were fixed, and no object was moving in the surroundings
so that the environment is time-invariant. A line-of-sight
(LOS) path exists between the Tx and the Rx which are located
9.8 m apart from each other. The signal at the correlator output
of the Rx has been recorded at ten locations on a circle and at
its center. The distance between two neighboring locations on
the circle is 0.5 The 11 recorded signals are identified with
those present at the output of a correlator bank connected to
a virtual antenna array with sensors located at the
measurement positions. The selected array geometry allows
an unambiguous azimuth estimation in the full range [0,
360 ). An industrial robot has been used to place the receiving
antenna at the desired locations. The quantization precision of
the SAGE algorithm is 1 ns and 0.05The number of waves to
be estimated is set to . The received signal is observed
over period. The initialization is performed by means of
the successive cancellation scheme described in Section IV-B.

The estimated delay-azimuth spread function of the channel
[25] is depicted in Fig. 13. This function is defined to be

where denotes the
Dirac distribution. In addition to the LOS wave, three other
waves can be related to a reflector/scatterer from which they
originate. Table I contains the estimated parameter values of
the four waves as well as the corresponding delay difference

calculated from the reconstructed paths in Fig. 12.
Notice that is the index of the wave propagating along

the LOS path and we have set The relative
delay errors range
from 9–16%. The cause of the large deviations could not
be definitely identified. The other waves estimated by the
SAGE algorithm could not be related to the environment. Their
azimuth is spread homogeneously over [0, 360 ). Considering
the estimated delays, some of the waves probably originate
from reflectors/scatterers located inside the building situated to
the left of the yard. These waves experience little attenuation
when they propagate through the large windows in the wall
fronting the yard.

C. Time-Variant Channels

The second measurement campaign was conducted by us-
ing the stand-alone testbed developed within the TSUNAMI
II project at the Center for PersonKommunikation, Aalborg
University [26]. The testbed consists of a receiving base
station (BS) equipped with an eight-element phased antenna
array and a transmitting mobile station (MS) equipped with
an omni-directional antenna. It is designed according to the
DCS1800 (Digital Cellular System 1800) standard [27] and is
implemented for up-link only. The eight signals at the array
output are sampled at the rate with s, and
stored on a hard disk for every TDMA-frame, i.e.,
ms, for off-line processing. The measurement campaign was
conducted in downtown Aalborg, Denmark, with the MS and
BS located as illustrated in Fig. 14.
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(a)

(b)

Fig. 10. (a) RMSEE(�̂1=j�1j) and (b) RMSEE(�̂1) versus the number of
iteration cycles for different values of[��;��] and�� = 0:

An example of the estimated azimuth-Doppler spread func-

tion and delay-azimuth
spread function is shown in Fig. 15. In this particular situation
the azimuth toward the Tx was 22It is observed that most
of the received power arrives from that direction, so that
the angular spread of the channel is relatively small. This
observation is consistent with previous experimental results
reported in [28] and [29] which show that the angular spread
is usually less than 5. As predicted by the simulation results
reported in Section V, the SAGE algorithm is capable of
resolving the waves with almost identical azimuths as long a
their Doppler frequencies or relative delays differ sufficiently.
As shown in Fig. 1 the Doppler frequency of a wave impinging
on the BS depends on the azimuth between the direction of
movement and the first object with which the wave interacts.
The same figure points out that many waves with distinct
Doppler frequencies might be impinging on the BS from two
nearby directions which cannot be distinguished from each
other.

(a)

(b)

Fig. 11. (a) RMSEE(�̂1=j�1j) and (b) RMSEE(�̂1) versus the number of
iteration cycles for different values of[��;��] and��=�c = 0:5:

It is quite difficult to relate most of the individual com-
ponents among the cluster around 22to an object in the
environment. The strong wave with azimuth 20, delay ,
and Doppler frequency 0 Hz, originates from a reflection on a
large building front (see Fig. 14). The SAGE algorithm does
also detect a few impinging waves at approximately20 .
The one with delay equal to is a reflection from a high
hotel building. The azimuth and delay profiles obtained from
the measured and reconstructed array out signals is reported
in Fig. 16. There is a good match between both types of
profiles for signal components higher than20 dB. Below

20 dB the fit is less accurate due to receiver noise as well
as model imperfections in the reproduction of the response of
the measurement system.

The convergence behavior of the SAGE algorithm is il-
lustrated in Fig. 17 for some measurements in both types
of investigated environments. Each sequence
is normalized by . The latter figure provides an
estimate of the limit toward which the sequence converges.
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Fig. 12. Map of the premises of the pico-cellular location including the path of the waves which can be related to scatterers/reflectors.

Fig. 13. Estimated delay-azimuth spread function obtained in the
pico-cellular environment(L = 20):

TABLE I
INCIDENCE PARAMETERS OF THE WAVE WHICH CAN BE

RELATED WITH THE PROPAGATION ENVIRONMENT IN FIG. 12

The log-likelihood sequences significantly increase within the
first iteration cycles and have almost converged after ten
iteration cycles.

The value of is larger when the
successive cancellation scheme is used. This might be ex-

Fig. 14. Map of central Aalborg. The thick broken line denotes the route
of the MS.

plained by the fact that the cancellation of already estimated
waves in the received signal increases the accuracy with
which the remaining waves can be estimated. Nevertheless,
the convergence rate of the sequences is almost identical after
one iteration cycle regardless of the initialization procedure.
This behavior indicates that the SAGE algorithm exhibits some
robustness against the initialization methods. The convergence
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(a)

(b)

Fig. 15. (a) Example of an estimated azimuth-Doppler spread function
and (b) an estimated delay-azimuth spread function in a macro-cellular
environment(Ts = 0:923 �s).

rate of the SAGE algorithm is slightly slower when it is applied
to measurement data than when it is used with synthetic data.
This behavior is also expected since, in real environments,
the impinging waves might embody a diffusely scattered com-
ponent so that the underlying model assumption of specular
incident waves does not hold.

VII. CONCLUSIONS

The performance of the SAGE algorithm applied for sepa-
rating impinging waves with respect to their relative delay,
incidence azimuth, and Doppler frequency in mobile radio
environments has been investigated in synthetic and real
conditions. Monte Carlo simulations in synthetic environments
demonstrate the high resolution ability of the scheme: it
is capable of easily separating waves as soon as one of
their three parameters differ by more than roughly half the
intrinsic resolution of the measurement equipment. Two waves
are assumed to be separated when the MSEE’s of their
parameter estimates are close to the corresponding CRLB’s
obtained when each wave is considered separately. The term
easily means that the SAGE algorithm converges rapidly, i.e.,
within less than 20 iteration cycles. Convergence is meant to

be achieved when the MSEE’s approach the corresponding
CRLB’s.

When the SAGE algorithm is used in real environments,
the log-likelihood sequence essentially converges within ten
iteration cycles. Various validation techniques indicate that the
SAGE algorithm returns consistent estimates.

Due to its appealing properties, the SAGE algorithm proves
to be a powerful tool for off-line processing of extensive
channel measurement data especially for channel modeling
purposes [30], [11]. The presented experimental results show
in particular that it can be successfully applied to resolve
waves with arbitrarily close incidence azimuths, a situation
frequently encountered at the base stations in macro-cellular
environments. Other studies have revealed that the SAGE al-
gorithm is also a promising candidate for channel estimation in
direct-sequence code-division multiple access communication
systems [31]–[33].

APPENDIX A
DERIVATION OF (22)

We start with the log-likelihood function (4) for the given
estimation problem, where we have replacedby its real-
valued version defined in (18). The elements of the FIM
are defined as

[34], [35]. Using the identity
in (4), the second order derivative in the previous

expectation is given by

Equation (22) follows immediately by applying again the
above identity to the last two terms and by noting that
the expectation of the first two terms vanish because of

APPENDIX B
DERIVATION OF (25)

Let us define
Equation

(22) can then be rewritten according to

(33)
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Fig. 16. Power azimuth and delay profiles computed from the measured (solid) and the reconstructed (dashed) signals at the array output.

Fig. 17. Loglikelihood values versus the number of iteration cycles for different measurement data: pico-cellular environment (dashed), macro-cellular
environments (solid).

The -D vector-valued function can be expressed
in the compact notation

(34)

where denotes the Kronecker product. Notice that we also
make use of (1) and (3) to obtain (34). Then, (25) results by
inserting (34) in (33) and invoking the identities

and

APPENDIX C
DERIVATION OF THE CRLB’S IN (27)–(30)

In the case it follows from (26) that all nondiagonal
elements of the FIM vanish. Hence, is obtained
by inverting the element of We first derive

in (28). The proof is analogous to that given in
[36] for It can be easily shown from (25) that the

components of the submatrix in (23) are given by

(35)

For the case we have so that (35) reduces to
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The last term results from the identity
and noting that

Invoking (25) again, we can show that the components of
the submatrix take the form

(36)

Identity (29) follows from (36) and
where is the Gabor bandwidth [22] of

The proof of (30) is trivial.
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