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1. Groups

Definition. A group is a set G with a law of composition that has the following properties:

� Closure (Totality): 8a; b2G; ab2G
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� Associativity: 8a; b; c2G; (ab)c= a(bc)
� Identity: 912G; 1a= a1= a
� Invertibility: 9b2G; ba= ab=1

A group is abelian or commutative if it satis�es 8a; b2G; ab= ba.

Definition. A subset H of a group G is called a subgroup if it has the following properties:

� Closure (Totality): 8a; b2H; ab2H
� Identity: 12H
� Inverses: If a2H; a¡12H

1.1. Homomorphisms
Let G;G0 be groups. A homomorphism ':G!G0 is any map satisfying the rule

'(ab) = '(a)'(b) (1)

for all a; b2G. When the map ' is bijective, it's called an isomorphism.

1.2. Conjugation
The conjugation is a map G�G!G, de�ned by fgxg¡1; g; x2Gg.

Definition. The stabilizer of an element x 2 G for the operation of conjugation is called the
centralizer of x and is denoted by Z(x):

Z(x)= fg 2Gjgxg¡1=xg= fg 2Gjgx=xgg (2)

Note x2Z(x), because x commutes with itself.

Definition. The orbit of x for the operation of conjugation is called the conjugacy class of x.

Cx= fx02Gjx0= gxg¡1 for some g 2Gg (3)

By de�nition, jGj= jCxjjZ(x)j.

Definition. If H is a subgroup of G, and satis�es gHg¡1=H, which means H is self-conjugate
for all elements g 2G, then H is called an invariant subgroup or a normal subgroup of G.

1.3. Vector Space

Definition. A real vector space is a set V together with two laws of composition:

a) Addition: V +V ! V, written v; w v+w

b) Scalar multiplication: R�V ! V, written c; v cv

The laws of composition satis�es the following axioms:

i. Addition makes V into an abelian group V +;

ii. Scalar multiplication is associative: (ab)v= a(bv);

iii. Identity operation: 1v= v;

iv. Two distributive laws hold: (a+ b)v= av+ bv a(v+w)= av+ aw.

Definition. The dimension of a �nite-dimensional vector space V is the number of vectors in a
basis. The dimension is denoted by dimV.

Given a basis (v1; v2; :::; vn) of a vector space V , for all v 2V , it can be expressed as

v=x1v1+ :::+xnvn (4)
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where the scalar xi are called the coordinates of v.

Definition. Suppose V is a vector space, and S is a subspace of V, then the span of S is

SpanS= fv jv= c1v1+ :::+ crvrg where v1; :::; vr 2S (5)

If W1;W2; :::;Wn are subspaces of a vector space V , the span of the subspaces is denoted by

W1+ :::+Wn= fv 2V jv=w1+ :::+wn;withwi2Wig (6)

The sum is the smallest subspace containing W1;W2; :::;Wn. The subspaces are independent if

w1+ :::+wn=0;withwi2Wi implieswi=0 for all i: (7)

Definition. The direct sum of W1; :::;Wn is

V =W1�W2� :::�Wn; if V =W1+W2+ :::+Wn and ifW1; :::;Wn are independent (8)

Let W1;W2 be subspaces of a �nite-dimensional vector space V , then

dim(W1) +dim(W2) =dim(W1\W2)+ dim(W1+W2) (9)

Definition. The Kronecker product of an m�n matrix A and an p� q matrix B is de�ned as

A
B =

0@ a11B ::: a1nB
��� ��� ���

am1B ::: amnB

1A (10)

which is also called a direct product or a tensor product.

Definition. A metric function on a vector space V is a mapping of a pair of vectors into a number
in the �eld F associated with the vector space.

(v1; v2) = f v1; v22V ; f 2F (11)

This mapping obeys

(v1; �v2+ �v3) = �(v1; v2)+ �(v1; v3) (12)
(�v1+ �v2; v3) = (v1; v3)�+(v2; v3)� (13)
(�v1+ �v2; v3) = (v1; v3)�

�+(v2; v3)�
� (14)

Metrics obeying conditions (12) and (13) are called bilinear metrics; those obeying (12) and (14)
are called sesquilinear.

Definition. Groups preserving bilinear symmetric metrics are called orthogonal.

Definition. Groups preserving bilinear antisymmetric metrics are called symplectic.

Definition. Groups preserving sesquilinear symmetric metrics are called unitary.

1.4. Linear Groups
The real general linear group GLn is [1]

GLn = fP 2GLn(R)jP¡12GLn(R)g (15)

The real special linear group SLn is

SLn = fP 2GLn(R)jdetP =1g (16)

The orthogonal group On is

On = fP 2GLn(R)jPTP = Ig (17)
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The unitary group Un is

Un = fP 2GLn(C)jP �P = Ig (18)

The symplectic group SP2n is

S =

�
0 I
¡I 0

�
SP2n = fP 2GL2n(R)jP tSP =Sg (19)

The orthogonal group for inde�nite forms is

O3;1 = fP 2GLn(R)jPTI3;1P = I3;1g (20)

The linear operators represented by O3;1 are called Lorentz transformations. The dimensionalities
relations of classical groups is in Fig. 2.5 in [2].

Axiom. If A2On, then j�(A)j=1 and det(A) =�1.

Proof. Let � be an eigenvalue of A and Av=�v with v=/ 0, then

(Av)T(Av) = (�v)T(�v)

vT(ATA)v = �2vTv

Since A2On and ATA= I,

vTv = �2vTv

�2 = 1

j�j = 1 (21)

It should be noted � can be complex. As for the determinant, we have

det(ATA) = det(I) =1
(det(A))2 = 1

det(A) = �1

When det(A)= 1, it represents rotation; otherwise det(A) =¡1, it represents re�ection. �

Theorem. (Euler's theorem) If A2SO3, then at least one eigenvalue of A is 1.

Proof. Let � be an eigenvalue of A and Av=�v with v=/ 0, then the characteristic equation is

f(�)=�3+ a�2+ b�+ c=0

Its solution satis�es

�1�2�3 = det(A)= 1

�1+�2+�3 = trace(A)

Since the highest order of f(�) is an odd number, then it must have a real root �1.

1. If three roots are all real, from (21), �=�1. Considering �1�2�3= 1, three roots can't be
all ¡1. Therefore there is at least one root is 1.

2. If two roots are complex and one root �1 is real, then �1=�1 and

f(�)= (�¡�1)(�2+ e�+ f)= 0

then �2;3=�� �i and �2�3=�2+ �2>0. Since we have �1�2�3=1>0, it's true that �1>0.
Moreover, �1=1.

Above all, at least one eigenvalue of A is 1. �
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1.5. Linear Transformations
Let T :V ¡!W be any linear transformation. We introduce two subspaces

kernel of T : KerT = fv 2V jT (v) =0g
image of T : imT = fw 2W jw=T (v)8v 2V g

Assuming V is �nite-dimensional, then

dim(V )= dim(kerT ) +dim(imT ) = rank+nullity (22)

1.6. SpecialUnitaryGroup
The elements of SU2 are complex 2� 2 matrices of the form

P =

 
a b

¡b� a�

!
;with a�a+ b�b=1 (23)

Proof. Because detP =1, let

P =

�
a b
u v

�
 
a� u�

b� v�

!
=P � = P¡1=

�
v ¡b
¡u a

�
Therefore

v = a�

u = ¡b�
detP = a�a+ b�b = 1

�

Writing a=x0+x1i; b=x2+x3i, then detP = a�a+ b�b=x0
2+x1

2+x2
2+x3

2=1 ,which de�nes a
unit 3-sphere in R4.

SU2  ! S3

P =

�
x0+x1i x2+x3i
¡x2+x3i x0¡x1i

�
 ! (x0; x1; x2; x3)

1=

�
1 0
0 1

�
 ! (1; 0; 0; 0)

i=

�
i 0
0 ¡i

�
 ! (0; 1; 0; 0)

j =

�
0 1
¡1 0

�
 ! (0; 0; 1; 0)

k=

�
0 i
i 0

�
 ! (0; 0; 0; 1)

A famous theorem of topology asserts that the only spheres on which one can de�ne continuous
group laws are the 1-sphere and the 3-sphere.

1.7. MatrixRepresentation
An n¡ dimensional matrix representation of a group G is a homomorphism

�:G!GLn(V ) (24)

The dimension of the representation � is de�ned to be the dimension of the �nite-dimensional
vector space V .
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If ¡ is a mapping from A to B such that 8a2A;¡(a)2B, then ¡ is said to be into, or injective.
If 8b2B; 9a2A;¡(a)= b, then ¡ is said to be onto, or surjective.

1.8. Cosets

Definition. The set denoted by aN is called a coset of N in G if:

aN = fg 2Gjg= an for somen2Gg (25)

Corollary. A group homomorphism ':G!G0 is injective (an isomorphism) i� its kernel is the
trivial subgroup.

2. Fields

Definition. A �eld F is a set together with two laws of composition:

F +F!F ; F �F!F

called addition and multiplication, which satisfy these axioms:

� Addition: abelian group F+; identity element 0

� Multiplication: commutative, abelian group F�; identity element 1

� Distributive law: 8a; b; c2F ; a(b+ c)= ab+ ac

Definition. A vector space V over a �eld F is de�ned as in ( 1.3), with F replacing R.

a) Addition: V +V ! V, written v; w v+w

b) Scalar multiplication: F �V !V, written c; v cv

The laws of composition satis�es the following axioms:

i. Addition makes V into an abelian group V +;

ii. Scalar multiplication is associative: (ab)v= a(bv); 8a; b2F ; 8v 2V;
iii. Identity operation: 1v= v 812F ; 8v 2V;
iv. Two distributive laws hold: (a+ b)v= av+ bv a(v+w)= av+ aw 8a; b2F ; 8v; w 2V.

3. Rings

Definition. A ring R is a set together with two laws of composition + and �, called addition
and multiplication, that satisfy these axioms:

� Addition: abelian group R+; identity element 0

� Multiplication: commutative and associative, identity element 1

� Distributive law: 8a; b; c2R; a(b+ c) = ab+ ac

4. Lie Groups and Lie Algebras

4.1. Lie Groups

Definition. A topological space T is a set of points on which is placed a topology T. The topology
T is a choice (set) of subsets S1; S2; ::: of T: Si�T ; Si2T. The topology T obeys

Axiom 1. The empty set �2T; the topologica space T 2T.

Axiom 2. Finite intersections of elements in T are elements in T.\
i=1

�nite

Si2T (26)
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Axiom 3. Arbitrary unions of elements in T are elements in T.[
i=1

�niteorin�nite

Si2T (27)

The elements Si in the topology T are called open sets.

A topological space obeying the additional axiom 4 is called a Hausdor� space.

Axiom 4. If p 2 T ; q 2 T ; p=/ q, then there exist Sp 2 T ; Sq 2 T with the property p 2 Sp; q 2 Sq;
Sp
T
Sq=�.

Definition. An open set Sp containing p is called a neighborhood of p, symbolically p2Sp2T.

Definition. A space T is compact if every in�nite sequence of points t1; t2; :::; (ti2T ) contains a
subsequence of points that a) converges to a point and b) this point is in T. This point is called a
limit point.

Definition. A space T is closed if it contains all its limit points. The set T, together with all its
limit points, is called the closure T� of T.

Definition. �: (T ;T )! (U ;U) is continuous if the inverse image of any open set in U is an open
set in T.

Definition. A di�erentiable manifold M consists of

1. A Hausdor� space (T ; T );

2. A collection � of mappings �p2�: �p:T!R� p2T.

which obeys the following properties

a) �p is a 1-1 mapping of an open set Tp (p2Tp) into an open set in R�;

b)
S
Tp=T;

c) If Tp
T
Tq is not empty, then �p(Tp

T
Tq) is an open set in R�, and �q(Tp

T
Tq) is an open

set in R� which is di�erent from �p(Tp
T
Tq). The mapping �p ��q¡1 must be continuous and

di�erentiable;

d) (Maximality). The mappings �p ��q¡1 and �q ��p¡1, described in c), are mappings in �.

Definition. A topological group or a continuous group consists of

1. An underlying �-dimensional manifold T;

2. An operation � mapping each pair of points (�; �) in the manifold into another point 
 in
the manifold �: T �T !T;

3. In terms of coordinate systems around the points 
; �; �, we write


�= ��(�1; :::; ��;�1; :::; ��); �=1; 2; :::; � (28)

The functions

�: � �� ! 
= ��

 :� ! �¡1

must be continuous and satisfy:

a) Closure: 
�= ��(�; �) �; �; 
 2T;

b) Associativity: ��(
; ��(�; �))= ��(��(
; �); �);

c) Identity: ��(e; �)=��= ��(�; e);

d) Inverse: ��(�¡1; �) = e�= ��(a; �¡1).
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Definition. A continuous group of transformations consists of

1. An underlying �-dimensional manifold T;
2. An operation � mapping each pair of points (�; �) in the manifold into another point 
 in

the manifold �: T �T !T, which obeys the postulates of a topological group;

3. A geometric space G, which is an N-dimensional manifold, and a mapping f : T �G!G.

yi= f i(�1; :::; ��;x1; :::; xN); i=1; 2; :::; N (29)

The function must be continuous and obey

a) Closure: yi= f i(�; x) �2T ; x2G; y 2G;

b) Associativity: f i(�; f i(�; x))= f i(��(�; �); �);

c) Identity: f i(e; x)=xi= f i(x; e);

d) Inverse: f i(�¡1; f i(�; x))= f i(�; f i(�¡1; x))= f i(��(�; �¡1); x)=xi.

Every continuous group may be considered as a continuous group of transformations if we allow
it to act on itself: G�T f � �.

Example. Consider a coordinate transformation f(�1;�2;x)=�1x+�2, where �1=/ 0, f is de�ned
on the geometric space G=R1. The function � is de�ned as

x00= f(�1; �2;x0) x0= f(�1; �2;x)

x00= �1x0+ �2= �1(�1x+�2) + �2= �1�1x+ �1�2+ �2= f(�1�1; �1�2+ �2;x)

�(�1; �2;�1; �2)� (�1�1; �1�2+ �2) (30)

where � acts on the topological space T =R2. The above de�nitions form a continuous group of
transformation.

The nonsingular matrices given by

(�1; �2)$

 
�1 �2

0 1

!
(31)

is a representation of this group in terms of 2� 2 matrices, where

f :

�
x0

1

�
=

 
�1 �2

0 1

!�
x
1

�
=

 
�1x+�2

1

!
(32)

�:

 

1 
2

0 1

!
=

 
�1 �2

0 1

! 
�1 �2

0 1

!
=

 
�1�1 �1�2+ �2

0 1

!
(33)

Additionally we have

(x0)N =(�1x+�2)N =
X
r=0

N �
N
r

�
(�1)r(�2)N¡rxr (34)

TheN+1 homogeneous polynomials (xN ;xN¡1; :::;x;1) can be used as bases for an (N+1)� (N +
1) matrix representation of the projective group. For N =3,

(�1; �2)$

0BBBBBB@
(�1)3 3(�1)2a2 3a1(�2)2 (�2)3

0 (�1)2 2�1�2 (�2)2

0 0 �1 �2

0 0 0 1

1CCCCCCA (35)

Definition. A space is said to be connected if any two points in the space can be joined by a line
and all the points of the line lie in the space.
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Theorem. The component of a continuous group that is connected (called a sheet) with the identity
is a group.

A connected space is simply connected if a curve connecting any two points in the space can
be continuously deformed into every other curve connecting the same two points.

Definition. A Lie group is a group T which is also an analytic manifold such that the composition
function �: T �T !T is analytic on its domain of de�nition [ 4].

Theorem. The connected component G0 of a continuous group G is an invariant subgroup of G.

Example. Transformations on d-dimensional spaces have the general form

xi
0= fi(x1; x2; :::; xd; a1; a2; :::; ar); i=1; 2; :::; d (36)

If the fi are analytic, then this de�nes an r-parameter Lie group of transformations.

4.2. Matrix Lie Groups

Definition. Supposing G is a closed subgroup of GL(n; c), the Lie algebra of G is

Lie(G) = fx2M(n; c)jetX 2G 8t2Rg (37)

Example. De�ne the mapping that preserves the operations of the �eld of complex numbers by

¡(1) =

�
1 0
0 1

�
¡(i) =

�
0 1
¡1 0

�
(38)

then the multiplication structure for the complex numbers

(a+ bi)(c+ di) = (ac¡ bd)+ (ad+ bc)i

 
¡¡ ¡!¡

¡1�
a b
¡b a

��
c d
¡d c

�
=

�
ac¡ bd ad+ bc
¡ad¡ bc ac¡ bd

� (39)

4.3. Linear Algebras

Definition. A linear algebra is a vector space V with additional vector multiplication operation:

� Closure (Totality): 8a; b2V ; ab2V
� Bilinearity: 8a; b; c2V ; (a+ b)c= ac+ bc; a(b+ c)= ab+ ac

Di�erent kinds of algebras may be obtained, depending on which additional postulates satis�ed:

� Associativity: 8a; b; c2V ; (ab)c= a (bc)
� Identity: 12V
� Symmetric/antisymmetric: 8a; b2V ; ab=�ba
� Derivative property: 8a; b; c2V ; a(bc)= (ab)c+ b(ac)

4.4. Lie Algebras

Definition. The space of vectors tangent to G at the identity matrix I is called the Lie algebra
of the group.

Given S�Rk, a vector v is said to be tangent to S at a point x if there is a di�erentiable path
'(0)=xand'0(0)=v. If S is the locus of zeros of one or more polynomial functions f(x1;x2; :::; xk),
it's called a real algebraic set: S= fxjf(x) =0g.
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Example. the unit circle in R2 is a real algebraic set because it's the locus of zeros of the
polynomial f(x1; x2)=x12+x22¡ 1= 0.

Let '(t) be a path in a real algebraic set S, and let x= '(t); and v= '0(t), thus

f(x)= f('(t))= 0 (40)

Take derivative on both sides

0=
d
dt
f('(t))=

@f
@x1

v1+ :::+
@f
@xk

vk=rf(x) � v (41)

where rf(x) =
�

@f

@x1
; :::;

@f

@xk

�
is the gradient vector.

Corollary. Let S be a real algebraic set in Rk, which is the locus of zeros of f(x). The tangent
vectors to S at x are orthogonal to the gradients rf(x).

Introduce a formal in�nitesimal element � such that �2=0. De�ne a multiplication on the vector
space E= fa+ b�ja; b2Rg as the rule

(a+ b�)(c+ d�) = ac+(ad+ bc)�

 
¡¡ ¡!¡

¡1�
a b
0 a

��
c d
0 c

�
=

�
ac ad+ bc
0 ac

� (42)

where ¡ denotes the mapping ¡(1)=
�
1 0
0 1

�
，¡(�)=

�
0 1
0 0

�
. The addition is vector addition. The

main di�erence between C andE is that E is not a �eld, because � has no multiplicative inverse.
Instead E is a ring. Since �2=0, the terms of degree >2 in � drop out. The Taylor's expansion is

f(x+ v�)= f(x)+ (rf(x) � v)� (43)

Definition. A vector v is called an in�nitesimal tangent to a real algebraic set S at x if

f(x+ v�)= 0 (44)

Corollary. Let x be a point of a real algebraic set of S. Every tangent to S at x is an in�nitesimal
tangent. The converse is also true i� sets S are su�ciently smooth.

Case 1. For SLn(R), A is an in�nitesimal tangent vector if det(I +A�)= 1.

det(I +A�)= 1+ (trace(A))�=1 ) trace(A) =0 (45)

Proposition. The following conditions on a real n�n matrix A are equivalent:

i. trace(A)=0;

ii. etA is a one-parameter subgroup of SLn(R);

iii. A is in the Lie algebra of SLn(R);

iv. A is an in�nitesimal tangent to SLn(R) at I.

Case 2. For On(R), A is an in�nitesimal tangent vector if (I +A�)T(I +A�)= I.

(I +A�)T(I +A�)= I +(AT +A)�= I ) AT +A=0 (46)

Proposition. The following conditions on a real n�n matrix A are equivalent:

i. A is skew-symmetric;

ii. etA is a one-parameter subgroup of On(R);

iii. A is in the Lie algebra of On(R);

10 Abstract Algebra



iv. A is an in�nitesimal tangent to On(R) at I.

Definition. The Lie bracket is the law of composition de�ned by the rule

[A;B] =AB ¡BA (47)

The bracket operation is the in�nitesimal version of the commutator PQP¡1Q¡1. Using two in�n-
itesimals �; � and the rules �2= �2=0 and ��= ��. Note (I+A�)¡1= I ¡A�. If P = I+A�andQ=
I +B�, the commutator expands to

(I +A�)(I +B�)((I +B�)(I +A�))¡1= I +(AB ¡BA)�� (48)

Proof. To show the Lie bracket is a law of composition on the Lie algebra, we must check 8A;
B 2Lie(G); [A;B]2Lie(G).

i. For G = SLn(R), if trace(A) = trace(B) = 0, then trace([A; B]) = trace(AB ¡ BA) =
trace(AB)¡ trace(BA)= 0;

ii. For G = On(R), if AT = ¡A; BT = ¡B, then [A; B]T = (AB ¡ BA)T = BTAT ¡ ATBT =
BA¡AB=¡[A;B]; �

Example. If � and � are elements in an abelian group, then ���¡1= �. However, if the group
is not commutative, de�ne 
 to measure the di�erence ���¡1 = 
�. Then 
 is a group element
because ��(��)¡1= 
, which is called the commutator of elements �; � in a group.

Now assuming �; � are close to the identity, expand them in terms of in�nitesimal generators:�
�
�

�
= I +

 
X��

X��

!
��(��)¡1 = I +(X�X� ¡X�X�)��

= I + [X�; X�]��

Since ��(��)¡1 is a group element, the commutator can be expanded in terms of another basesX�:

[X�; X�] =C��
� X� (49)

where C��� are called structure constants.

Definition. A Lie algebra V over a �eld F is a vector space together with a law of compositions

V �V ! V
v;w  [v; w]

(50)

called the Lie bracket, having these properties:

i. bilinearity: [v1+ v2; w] = [v1; w] + [v2; w],[v; w1+w2] = [v; w1] + [v; w2],
[cv; w] = c[v; w] = [v; cw];

ii. skew symmetry: [v; w] =¡[w; v]; or [v; v] = 0;

iii. Jacobi identity: [u; [v; w]] + [v; [w; u]] + [w; [u; v]] = 0;

for all u; v; w2V and all c2F.

4.5. In�nitesimal Generators
Let (T ; �) be a Lie group that acts on the geometric space GN by means of a transformation of
coordinates f(�;x), which is a Lie group of transformation. If F (p) is any function de�ned on all
points p2G, then we have in di�erent coordinate system X andY ,

F (p) = FY (y1(p); y2(p); :::; yj(p); :::; yN(p))

= FX(x1(p); x2(p); :::; xj(p); :::; xN(p))

The coordinate systems X andY in GN are related by a given Lie group of transformation

yj(p) = f j(�;x(p)) (51)
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Subsequently we have

xj(p) = f j(�¡1; f(�;x(p)))

= f j(�¡1; y(p))

FY (y1(p); y2(p); :::; yN(p)) = FX(f1(�¡1; y(p)); f2(�¡1; y(p)); :::; fN(�¡1; y(p))) (52)

Concentrate on transformations close to the identity 0, which adds disturbance ��� = � ! 0;
(��¡1)�=¡�,

xj(p) = f j((0+ ���)¡1; y(p))

= f j(¡�; y(p))

= f j(0; y(p))+
@f j(�; y(p))

@��

��������
�=0

(¡�)+ :::

=� yj(p)¡ @f
j(�; y(p))
@��

��������
�=0

� (53)

Substitution into (52) generates

FY (y(p)) = FX

�
yj(p)¡ @f

j(�; y(p))
@��

��������
�=0

�

�
=� FX(y(p))¡ �@f

j(�; y(p))
@��

��������
�=0

@FX(y(p))

@yj
(54)

FY (y)¡FX(y) = �

�
¡@f

j(�; y)
@��

��������
�=0

@

@yj

�
FX(y)

� �X�(y)F
X(y) (55)

By changing variables x= y,

X�(x)=¡
@f j(�;x)
@��

��������
�=0

@

@xj
(56)

are de�ned as the generators of in�nitesimal displacements of coordinate systems by �, or simply
generators.

Example. For two-parameter group f1(�1; �2;x) = e�
1
x+�2, the generators are

X1(x) = ¡@f(�;x)
@�1

��������
�=0

@
@x

= ¡x @
@x

X2(x) = ¡@f(�;x)
@�2

��������
�=0

@
@x

= ¡ @
@x

(57)

Suppose we have a function FX(x)= (x¡ c)2,
Case 1. If there exists a relation y=x+ �, where �= ���; �=2, then

FY (y) = (y¡ �¡ c)2

= (y¡ c)2+ �X�(y)F
X(y)

= (I + �X�(y))(y¡ c)2

for �nite displacement y=x+��; �=2,

FY (y) = lim
N!1

�
I +

�2

N
X2(y)

�N
(y¡ c)2

= e�
2X2(y)(y¡ c)2

= e
¡�2 @

@y(y¡ c)2

= (y¡ (c+�2))2

Case 2. If there exists a relation y= e��
1
x=(1+ ��1)x, then

FY (y) = (I ¡ ��1X1(y))(y¡ c)2
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for �nite displacement y=x+��; �=1,

FY (y) = lim
N!1

�
I ¡ �

1

N
X1(y)

�N
(y¡ c)2

= e¡�
1X2(y)(y¡ c)2

= e
¡�1y @

@y(y¡ c)2

= (e¡�
1
y¡ c)2

The idea [5] behind in�nitesimal generator is to consider an in�nitesimal transformation around
the identity. Any �nite transformation can be then constructed by the integration of this in�ni-
tesimal transformation.

Example. For SO2, expand R(�)=
�

cos(�) ¡sin(�)
sin(�) cos(�)

�
into a Taylor series around the identity (�=0):

R(�) =R(0)+
dR
d�

��������
�=0

�+
1
2
d2R
d�2

��������
�=0

�2+ ::: (58)

From R(�1+ �2)=R(�1)R(�2), we have

dR(�1+ �2)
d�1

=
dR(�1)
d�1

R(�2) (59)

With the setting �1=0, the left-hand side of (59) is

dR(�1+ �2)
d(�1+ �2)

d(�1+ �2)
d�1

��������
�1=0

=
dR(�1+ �2)
d(�1+ �2)

��������
�1=0

=
dR(�2)
d�2

(60)

the right-hand side of (59) is

dR(�1)
d�1

R(�2)

��������
�1=0

=

�
¡sin(�1) ¡cos(�1)
cos(�1) ¡sin(�1)

���������
�1=0

R(�2) =

�
0 ¡1
1 0

�
R(�2) (61)

then after changing variable (59) becomes

dR(�)
d�

=

�
0 ¡1
1 0

�
R(�) � XR(�) (62)

By observing that R(0)= I, we obtain

dR(�)
d�

��������
�=0

= XR(0) = X (63)

The higher-order derivatives of R is then

dnR(�)
d�n

��������
�=0

= X
dn¡1R(�)
d�n¡1

��������
�=0

= X2d
n¡2R(�)
d�n¡2

��������
�=0

= ::: = Xn (64)

The Taylor series becomes

R(�) = I +X�+
1
2
X2�2+ :::

=
X
n=0

1
1
n!
(X�)n

= e�X (65)
e�X = I cos(�) +X sin(�) (66)

Thus every rotation by a �nite angle can be obtained from the exponentiation of the matrix X,
which is called the ini�nitesimal generator of rotations.
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Example. GL3(R) has 9 parameters, but the invariance of the length produces 6 independent
conditions, leaving 3 free parameters, so O3(R) forms a 3-parameter Lie group.

1. First rotation is about the z-axis by angle �3:

R3(�3) =

0@ cos(�3) ¡sin(�3) 0
sin(�3) cos(�3) 0
0 0 1

1A X3=
dR3
d�3

��������
�3=0

=

0@ 0 ¡1 0
1 0 0
0 0 0

1A (67)

2. Second rotation is about the x-axis by angle �1:

R1(�1) =

0@ 1 0 0
0 cos(�1) ¡sin(�1)
0 sin(�1) cos(�1)

1A X1=
dR1
d�1

��������
�1=0

=

0@ 0 0 0
0 0 ¡1
0 1 0

1A (68)

3. Final rotation is about the y-axis by angle �2:

R2(�2) =

0@ cos(�2) 0 sin(�2)
0 1 0

¡sin(�2) 0 cos(�2)

1A X2=
dR2
d�2

��������
�2=0

=

0@ 0 0 1
0 0 0
¡1 0 0

1A (69)

The rotations do not commute. De�ne the commutator of X1 andX2 as

[X1; X2]�X1X2¡X2X1=X3 [X2; X3] =X1 [X3; X1] =X2 (70)

Another approach is to make small disturbation0@ x0

y 0

z 0

1A=
0@ 1 ¡�3 �2

�3 1 ¡�1
¡�2 �1 1

1A0@ x
y
z

1A
Substituting this coordinate transformation into a di�erentiable function F (x; y; z),

F (x0; y 0; z 0) = F (x¡ �3y+ �2z; �3x+ y¡ �1z;¡�2x+ �1y+ z)

= F (x; y; z) +

�
@F

@z
y¡ @F

@y
z

�
�1+

�
@F

@x
z¡ @F

@z
x

�
�2+

�
@F

@y
x¡ @F

@x
y

�
�3 (71)

The generators Xi are

X1 = y
@
@z
¡ z @

@y

X2 = z
@
@x
¡x @

@z

X3 = x
@
@y
¡ y @

@x

(72)

4.5.1. In�nitesimal generators for Lie groups

Instead of geometric space G, consider in topological space T , in which 
= �(�;�). The in�nites-
imal generators are

X�(x) = ¡@f
i(�;x)
@��

��������
�=0

@
@xi

X�(�) = ¡@�
�(�;�)
@��

��������
�=0

@

@��

(73)

A Lie group acting on itself is a nonsingular change of basis,

det
��������@��(�;�)@��

��������
�=0

��������=/ 0
De�ne

u(x) =
@f i(�;x)
@��

��������
�=0

	(�)=
@��(�;�)
@��

��������
�=0

(74)
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then we have

X�(x) = ¡u(x) @
@xi

X�(�) = ¡	(�) @

@��

(75)

Example. If we de�ne a Lie group and its multiplicaiton law as

�1(�1�2; �1�2) = �1+ �1

�2(�1�2; �1�2) = e�
1
�2+ �2

The generators are

�
X1(�)
X2(�)

�
=¡

0BB@ @�1

@�1
=1

@�2

@�1
= �2

@�1

@�2
=0

@�1

@�2
=1

1CCA
��������������
�=0

0BB@ @

@�1

@

@�2

1CCA=
0BB@ ¡ @

@�1
¡ �2 @

@�2

¡ @

@�2

1CCA (76)

The group operation can be interpreted in two ways, because the dimensions are equal for two
parameters:

1. Left translation by �: �0(p)= �(�; �(p)); the generators are as in (76).

2. Right translation by �: � 0(p)= �(�(p); �); the generators are

�
X1(�)
X2(�)

�
=¡

0BB@ @�1

@�1
=1

@�2

@�1
=0

@�1

@�2
=0

@�1

@�2
= e�

1

1CCA
��������������
�=0

0BB@ @

@�1

@

@�2

1CCA=
0BB@ ¡ @

@�1

¡e�1 @

@�2

1CCA (77)

4.5.2. In�nitesimal generators for matrix groups

If M(�1; �2; :::; ��) is an element of a group of r� r matrices, the in�nitesimal generators are

X�(r� r)= lim
��!0

M(0; 0; :::; ��; :::; 0)¡M(0; 0; :::; 0; :::; 0)
��

4.6. Lie's Three Theorems

4.6.1. Lie's First Theorem

Theorem. If yj(p) = f j(�;x(p)) is analytic, then

@yj

@��
=
@f j(�;x)
@��

=
X
k=0

�

	�k(�)ukj(y) (78)

Proof. If we transform from coordinate system S to S 0, and then to S 00,

S(x)!!!!!!!!!!!!� S 0(y)!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !�=���

S 00(z)

where � is close to the identity. Then the di�erence

dyj = zj¡ yj

can be computed as

yj = f j(�;x)

zj = (y+ �y)j

= f j(���; y)

dyj =
@f j(�; y)
@��

��������
�=0

���

� ���u(y) (79)
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where u(y) is a ��N nonsingular matrix. Also we have

(�+ d�)� = ��(��;�)

d�� =
@��(�;�)
@��

��������
�=0

���

� ����(�)

Since �(�) is an �� � nonsingular matrix, it has an inverse 	(�),

	(�)�(�) =�(�)	(�) = I

��� = d��	(�)

Substitution into (79) generates

dyj = ���u(y)

= d��	(�)u(y)

@yj

@��
=
X
k=0

�

	�k(�)ukj(y)

In this theorem Lie decoupled PDE into the product of two matrices. �

Example. If �=(�1; �2) and ��=(��1; ��2) is close to the identity, plus

y = e�
1
x+�2

y+ dy = e��
1
y+ ��2

dy = ��1y+ ��2 (80)

Since �� is close to the identity, we can write

(�+ d�)� = ��(��1; ��2;�1; �2) (81)

Because

f(�; f(�;x)) = f(�; e�
1
x+�2)

= e�
1
(e�

1
x+�2)+ �2

= e�
1+�1x+(�2e�

1
+ �2)

= f(�1+�1; �2e�
1
+ �2;x)

�(�;�) = (�1+�1; �2e�
1
+ �2)

then with �= �� (81) becomes 
�1+ d�1

�2+ d�2

!
=

 
��1+�1

�2e��
1
+ ��2

!

=

 
��1+�1

�2(1+ ��1) + ��2

!
 
d�1

d�2

!
=

 
��1

�2��1+ ��2

!

=

 
1 0

�2 1

! 
��1

��2

!
Take the inverse for both sides 

��1

��2

!
=

 
1 0

�2 1

!¡1 
d�1

d�2

!

=

 
1 0

¡�2 1

! 
d�1

d�2

!

16 Abstract Algebra



Substitution into (80) produces

dy = ��1y+ ��2

= d�1y+(¡�2d�1+ d�2)
= (y¡�2)d�1+ d�2

which means

@y
@�1

= y¡�2

@y
@�2

= 1

The second method to determine these partial derivatives is

�(�) =
@��(�;�)
@��

��������
�=0

=

0BB@ @�1

@�1
@�2

@�1

@�1

@�2
@�2

@�2

1CCA
�=0

=

 
1 �2

0 1

!

u(y) =
@f j(�; y)
@��

��������
�=0

=

0@ @f

@�1

@f

@�2

1A
�=0

=

�
y
1

�
Then we have

@yj

@��
=
X
k=0

�

	�k(�)ukj(y) =

 
1 �2

0 1

!¡1�
y
1

�
=

 
y¡�2
1

!

4.6.2. Lie's Second Theorem

Theorem. If X� are the generators of a Lie group, then the coe�cients C��� given by

[X�; X�] =C��
� X� (82)

are constants.

Definition. The necessary and su�cient conditions for the existence of a unique solution with
initial conditions

yi= f i(�;x)j�=0=xi (83)

is that all mixed derivatives are equal:

@2yi

@��@��
=

@2yi

@��@��
(84)

which is called integrability conditions.

Proof. Apply (84) in Lie's �rst theorem:

@
@��

(	�k(�)ukj(x)) =
@
@��

(	��(�)u�j(x))

	�k(�)
@ukj(x)

@��
¡	��(�)

@u�j(x)

@��
=

@	��(�)

@��
u�j(x)¡

@	�k(�)
@��

ukj(x) (85)

Replace the terms @u

@�
on the left by

@ukj(x)

@��
=

@xi

@��
@ukj(x)

@xi
= 	�k(�)ukj(x)

@ukj(x)

@xi

@u�j(x)

@��
=

@xi

@��
@u�j(x)

@xi
= 	��(�)u�j(x)

@u�j(x)

@xi

(86)
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Equation (85) then becomes

�

4.6.3. Lie's Third Theorem

Theorem. The structure constants obey

C��
� = ¡C��� (87)

C��
� C�


� +C�

� C��

� +C
�
� C��

� = 0 (88)

Proof. We have

C��
� =

�
@2��(�;�)
@��@��

¡ @
2��(�;�)
@��@��

���������
�=�=0

=¡C���

Equation (88) is a trivial consequence of the Jacobi identity.

[[X�; X�]; X
] + [[X� ; X
]; X�] + [[X
 ; X�]; X�] = 0 (89)

The Jacobi identity (89) bears a strong resemblance to the equation

d
dx

(f(x)g(x))=
df(x)
dx

g(x)+ f(x)
dg(x)
dx

(90)

For this reason, the Lie bracket [; ] is sometimes called a derivative. �

4.7. Converse of Lie's Three Theorems

4.8. Taylor's Theorem for Lie Groups

Theorem. There exists an analytic mapping 
� = ��(�; �) in which every straight line through
the origin is a one-dimensional abelian subgroup. The Lie group operation corresponding to the Lie
algebra element ��X� is

��X�! e¡�
�X�

Proof. Since X�(x) = ¡u(x) @

@xi
,we can write

@xj

@��
= 	(�)u(x) =¡	(�)X�(x)x

i

When we look at the straight line

��(�)= s��

through the origin of the Lie algebra, the xi are functions of the single parameter �:

dxi(�)
d�

=
@xi

@��
d��

d�
=¡	(�= s�)X�(x)x

is�

�

4.9. Classical Matrix Groups

4.9.1. Quaternion Groups

An arbitrary quaternion in GL(1; q) is written

q= q0�0+ q1�1+ q2�2+ q3�3 (91)
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in which �i obey the multiplication

�0 �1 �2 �3
�0 �0 �1 �2 �3
�1 �1 ¡�0 �3 ¡�2
�2 �2 ¡�3 ¡�0 �1
�3 �3 �2 ¡�1 ¡�0
Table 1. Quaternion bases

i. The identity under multiplication is 1�0;

ii. The identity under addition is 0;

iii. The quaternions form a group under multiplication excluding 0, which is a �eld.

4.9.2. Unitary Groups

4.9.3. Orthogonal Groups

4.10. Lie's Theory on PDE
If �0 indicates the identity transformation,

x=X(x; y; �0) y=Y (x; y; �0) (92)

expand it in a Taylor's series around �=�0 for su�ciently small �¡�0,�
x0

y 0

�
=

�
x
y

�
+

0@ @X

@�

@Y

@�

1A
�=�0

(�¡�0)

�
�
x
y

�
+

�
�(x; y)
�(x; y)

�
(�¡�0) (93)

The in�nitesimal transformation (93) is Euler's �nite-di�erence algorithm for solving the coupled
di�erential equations

dx
�(x; y)

=
dy

�(x; y)
= d� (94)

Example. For �0=0 and �(x; y)=¡y; �(x; y)=x. Thus (94) becomes

dx
¡y =

dy
x

= d� (95)

xdx = ¡ydy
1
2
x2 = ¡1

2
y2+

1
2
a2

x2+ y2 = a2

The second equation of (95) can be written

dy

a2¡ y2
p = d�

arcsin
�
y

a

�
= �+ b

y = a sin(�+ b)
x = a cos(�+ b)
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5. Integrators

5.1. Euler Method
� Explicit Euler Method [3]

yn+1= yn+hf(yn) (96)

� Implicit Euler Method

yn+1= yn+hf(yn+1) (97)

� Implicit Midpoint Rule

yn+1= yn+hf
�
yn+ yn+1

2

�
(98)

� Symplectic Euler Method
For partitioned systems

u_ = a(u; v)
v_ = b(u; v)

(99)

partitioned Euler methods which treats one variable by the implicit and the other variable
by the explicit Euler method

un+1 = un+ha(un; vn+1) or
un+1 = un+ha(un+1; vn)

vn+1 = vn+hb(un; vn+1) vn+1 = vn+hb(un+1; vn)
(100)

is a symplectic Euler method.

5.2. Symplectic Integrators
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