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2 CONTROL AND ESTIMATION

CONTROL

State and Control Input
1. ¥ =State = Differential Equation: how # changes is given;

2. 14 = Control input = Algebraic Equation: 4 can be changed arbitrarily.

Laplace Transform

The Laplace transform is defined as
F(s) = [ rwetae=con 1)

the inverse Laplace transform is

y+4iT
FH) = - 1im / T st (s)ds 2)

2T 00 ~—iT

Z-Transform

The unilateral Z-transform is the Laplace transform with

ef
d esT (3)

z

where T'=1/ f, is the sampling period. Let

Ap(t) ==L ié(t—nT) (4)

def

z4(t)

def

The Laplace transform of the sampled signal x4(t) is

Xq(s) = /OOOZ z[n]o(t —nT)e stdt
n=0

=S x[n]/oooé(tfnT)e*Stdt

n=0

The precise definition of the unilateral Z-transform of the discrete function x[n] is
o0
X(z) = Z x[nlz™" (8)
n=0
Fourier Transform

The Fourier transform is equivalent to evaluating the bilateral Laplace transform with imaginary
argument s =1iw or s = 27 f1,

f@o=F@=wu=/f}@wﬁmw (9)
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the inverse FT is

1 [ ;
10 = 5 [ repeas (10)
Discrete Fourier transform (DFT) is
N-1
Xp = Z $n€7i27rkn/N (11)
n=0
N-1

= xn(cos(2mkn /N) —isin(2wkn/N))

3
I
=]

Inverse DFT is
N

—1
k=0

=l

Fast Fourier Transform

Divide DFT into a sum over the even-numbered indices and a sum over the odd-numbered indices
N/2-1 N/2—-1
X, = Z mee—iQTrk(Qm)/N + Z xne—iQWk(Qm-&-l)/N
m=0 m=0
N/2—1 N/2—1
_ Z Lope 2T @m)/N | o —i2mk/N Z z,e 12Tk (2m) /N

m=0 m=0

ef .
& Byt e2m/NO, (13)

The periodictiy of the DFT indicates

B~ = L (14)
Ok+% = O (15)
Consider Xk+%,
Xk+§ - Ek+%+6_i2w(k+%)m0k+%
= Ep+ (e e 1 2R/N) O,
= Ej—e 2m/NO, (16)

Based on (13) and (16), FFT algorithm can reuse Ef, and Oy, to reduce DFT algorithm complexity
from O(N?) to O(N log(N)).

First-Order Systems
Consider a simplified closed-loop block diagram [4], in which the input-output relationship is

C(s) 1
= 1
R(s) Ts+1 (17)
1. Unit-Step Response
Subsitituting R(s) :% into (17), we obtain,
1 1 1 1
= = — 1
) =15 =5 5T /D) (18)
Take the inverse Laplace transform,
c(t)=1—e /T (19)
2. Unit-Ramp Response
Subsitituting R(s) 25_12 into (17), we obtain,
1 1 1 T, T2
S PR i R (20)
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Take the inverse Laplace transform,
c(t)=t—T +Te t/T
The error signal is
e(t)=r(t)—c(t)=T(1—e VT
lime(t)=T

t—o00

3. Unit-Impulse Response
Subsitituting R(s) 25_12 into (17), we obtain,

1 1
CE) =g V=777

Take the inverse Laplace transform,

Second-Order Systems

Consider a simplified closed-loop block diagram, in which the input-output relationship is

C(s) K

R(s)  Js2+Bs+K

Write % =w2, g =2(w, =20, then

52+ 2¢wps +w?
1. Underdamped case (0< (< 1):

C(s) w?

R(s)  (s+ Cwn+ jwa)(s + Cwp — jwa)

where wy is called the damped natural frequency and defined as wq=w,\/1 — ¢>.

For a unit-step input, C(s) can be written

2
w 1

C(s) = Z
() 52+ 2¢wps +w? s
1 s+ 2¢wn

s 824 2(wns +w?

1 s+ Cwn (wn

1 5+ (wnp, ¢

s (s+Cwn)?+wi (s+ Cwn)? 4wy

Wd

Apply inverse Laplace transform on both sides,

s (s+Cwn)?+wi  /1—C2(s+ (wn)2+w]

Wd

c(t)

1£—1< s+ Cwn ) ¢

(54 (wn)?+ wj V1— 2
¢
e

Vi
¢

= 1—e “rtcos(wat) —

—Cwnt
= 1- e—sin(wdt +tan~!

o

e

)

e~ S“nlsin(wgt)

s+ Cwn)?+w

2
d

)

(21)

(22)
(23)

(28)

(29)
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The error signal is
e(t) = r(t)—c(t)

eCwnt<Cos(wdt) + ﬁsin(wﬂ)) (30)

lime(t) = 0

t— o0
If the damping ratio ( =0,
c(t) = 1—cos(wpt) (31)

2. Critically damped case ((=1):
Two poles of C(s)/R(s) are equal,

C(s) w?
= 2
RG) ~ Gty %)
For a unit-step input, C(s) can be written
2
_ Wn l
C(S) = (s +0Jn)2 s (33)
Apply inverse Laplace transform on both sides,
c(t) = 1—e “mt(14wyt) (34)
3. Overdamped case ({>1):
Two poles of C(s)/R(s) are negative real and unequal,
R(s) (s+ Cwn+wn/CP—1)(s+ Cwn—wn/(2—1)
For a unit-step input, C(s) can be written
2
Cls) = “ 1 (36)

(54 (wn+wn/CP=1)(s+ (wn—wn\/(2—1) 8

Apply inverse Laplace transform on both sides,
~(¢HVE=T Jwnt —(¢= V=T Jwnt
e _ e
2/EI(CHV/ET) 2T VT

W, e—slt e—SQt)
= 1+ - 37
2,/¢?-1 < 51 52 (37)

where s1 = (C—i—\/@——l)wn,ands’g:(g— \/CQ——l)wn

PID Controller

c(t) = 1+

DEFINITION. A proportional-integral-derivative controller (PID controller) continuously calculates
an error value e(t) as the difference between a desired setpoint (SP) and a measured process variable
(PV) and applies a correction based on proportional, integral, and derivative terms.

ult) = Kyelt +K/ rydr + K240 (38)

Example 1. PD controller is a PID controller with K; =0,
u:pr(xf:rR)de(j:szR) (39)
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where e =x — xR, and £r is usually 0. Consider the case when applying force to move an object,

u = mi
7Kp(£L'7£L'R) 7Kd(i' 7£L-'R) = mi (40)
then the controller gains are
K, = mw? (41)
K4 = 2mQuy (42)

LQR Controller

DEFINITION. A linear—quadratic regulator (LQR) is essentially an automated way of finding an
appropriate state-feedback controller by minimizing a cost function with weighting factors. The
meaning of requlator is to maintain a fized point.

The cost function is [6]

1. Infinite-horizon LQR

J = / (2TQx + uTRu+ 22TNu)dt (43)
0
where u = —kx. The cost with optimal control is defined as
J* = 2Tsx (44)

Then the solution of LQR is
u* = —(R7'BTS)x=—kx (45)
S satisfies the associated Riccati equation ATS+SA—(SB+N)R—1(BTS+NT)+Q=0
ATS +SA—(SB+N)RY(BTS+NTY+Q = 0 (46)
2. Finite-horizon LQR

T
J = 2T(T)Qpx(T) +/ (2TQx + uTRu + 22T Nu)dt (47)
0
where 27 (T)Qpz(T) is called terminal cost, Q is the solution of (46), and S satisfies
ATS + SA—(SB+N)R"Y(BTS+NT)+Q = —S (48)
ST) = Qr (49)
Above is a final value problem.
Runge-Kutta Simulation
Initial value problem:
1. Euler’s method
& o= [t z(t)) (50)
Try1 = g+ hf(tk, o)
= zp+hfr (51)
2. Midpoint method
1 1
Tyl = :Ek+hf<tk+§h,:Ek+§hf(tk,.’£k)> (52)

3. Heun’s method

Tptr1 = T+ hf(te, z)
1 N
Tpr1 = ThFh(f (e 2r) + [+ h, Tren)) (53)
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4. Second-order general Runge-Kutta method

5. The forth-order Runge-Kutta mehod
The family of explicit Runge-Kutta methods is

Tp41 = a:k—l—hz bik;
=1
where
kl - f(tkayk)

ko f(te + coh, yp + h(az1k1))
ks = f(tx+csh, yr + h(asiki + as2ks))

ks = f(tk+csh, yp + h(asikr + asska + ... + as,s—1ks—1))

Co | 21 0

C3|asy as2 1/2 1/2

2 R 1/2| 0 1/2

Co | Qs1 Qo2 - Qg 5—1 1 0 0 1

by by ... bs_1 by [1/6 1/3 1/3 1/6

Table 1. Butcher tableau Table 2. Rk4 method

Trajectory Optimization
Boundary value problem (bvp4c in Matlab)
:_f = f(tvf)
s.t. AZ(a)+ BZ(b) = ¢

Boundary value optimization (fmincon in Matlab)

min J(Z)
s.t. I = f(t,7)
AZ(a) + B#(b)

Transcription methods:
Jo =0

Jk+1 = jk+ hw(tk,:fk,uk)

xo( T} po( i)
J w(tk,xk,uk)

Augmented State

1. Single shooting

(54)

(57)

(58)

Use the simulator to find objective functions; evaluate path constraints at grid points

and boundary constraints at xg, zx.
Don’t use ode45(), instead use fixed step methods.
Objective function is

N—-1
J = h> " g(@, i)

k=0
Decision variables are
Z = (ao,al, aUN—l)
The defect is
C = Iy—Zp=0
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where Zr is given, Z is the output of simulation. It’s an equality constraint.

aC _ A(@y —7r)

oz oz
_ Oin
o7
0N OZN OZN
= ( iy DU T Dun 1 ) (62)
start with N=k+1,
or 0
% = o, 2 (@ + hf (T, tr))
P
- 8 &%'k o . L Lo\ Oug
0Tk, iy,
= (1 T u as
(1 h L) gt +h Flh Gt (63)
Recursive equationo while k > p,
o ke
o (64)
oz, — 1 k=p

because current state is not affected by current or future controls; current control is only
dependent on itself. In terms of the cost function

= N-—-1
oJ 0 .. .
5 = n (o)

p k=0
N-1 - -
(2, ) )
ke a'fk aﬁp %k _’p
N-1
_ 0Ty, iy,
= 03 (0ath) 22+ gt 52 (65)
k=0
2. Multiple shooting
Decision variables are
Z = (Zo,T1, T2, s TN 1, o, U1, ey Un—1) (66)
Assume Euler’s method is used,
Zo+h f(Zo, to) — 71
G = 331+hf(33:17’u1)*332 (67)

In—1+hf(En_1,dn-1) — 2N

3. Trapezoidal collocation method
Approximating the control trajectory and the system dynamics as piecewise linear splines
[2], the state trajectory becomes piecewise quadratic splines, and the knot points of the
spline are coincident with the collocation points.

- . h L. . . .
Ck=wk+7k(f($k,wc)+f($k+1auk+1)) — Zpq1 (68)

The objecive function is

Z_ 7’“ g+ Gri1) (69)

4. Hermite-Simpson collocation method
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Approximating the control trajectory and the system dynamics as piecewise quadratic
splines, the state trajectory is a cubic Hermite spline, which has a continuous first derivative.

_  het o L o o B
Cy = fﬂk+gk(f($k,uk)+f(ﬂfk%,uk%)+f($k+1vuk+1)>*fﬂk+1 (70)

= R 1/, . h . o -

Cpp1 = $k+%*§($k+xk+%> *gk(f(xk,uk)* f(Zrt1, tipt1)) (71)

The objecive function is

N-—-1 n
k
cf;%-g(%+4%w;+gM1) (72)

5. Orthogonal collocation method
Decision variables are

o y T1,L2y ...y TN y TN41
Initialstate Stateatcollocationpoints X Finalstate

Time grid (grid or knot points) is then

to 5, ti,l2,..tN 5, IN41
Initialtime Collocationpoints Finaltime

QUESTION. How to find collocation points?
Answer. Roots of an orthogonal polynomial, eg. Legendre, chebyshev.

There are three types of grid points:

i. Gauss: un-collocated end points [+ roots of P,(7)
ii. Radav: one collocated end points [+ o] roots of P (7) + P—1(7)
iii. Lobotto: two collocated end points |- -] ro0ts of P,(7),[Bnd points]

Collocation constraints are

0=DX — f(XLC)
0= (zn41—x0) — WIF(XEE) (73)

changeinstate integralfOTf(t)dt

which indicates that change in position is integral of dynamics. In (73),

W is quadrature weights which is computed from collocation points. D is a N x (N + 1)

differentiation matrix. To determine W, find |, OT f(t)dt (Quadrature), select order and find

[ti, w;] that satisfies
N

T
—wTE — e
ANMFWF > wif(e) (74)
Error analysis

Sources of error are
— NLP: feasibility (le —12) and optimality (le —6)

— Transcription:
How good is the discrete model? (function approximation)
How good is our function approximation? (tolerance for transcription)

— Compute discrepancy between:
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Analytic derivative of the spline
Dynamics function along path

(1) = (t) = [, 2(0), u(t)) (75)

where %x(t) is calculated via ppDer function in Matlab code. [e(tx)| < tol
(fmincon feasible tolerance). For overall estimate,

= / le)lat (76)

It indicates how much integrator drift on Segment k. In Matlab, use integral() function.

NONLINEAR CONTROL

Nonlinear Phenomena
1. Finite escape time
2. Multiple isolated equilibria
3. Limit cycles
4. Subharmonic, harmonic, or almost-periodic oscillations
5. Chaos
6. Multiple modes of behavior
In particular [3], if fi(z1, 22) and fo(x1, x2) are analytic functions in a neighborhood of the
equilibrium point (f; and fo have convergent Taylor series representations), then it’s true that if
the origin of the linearized state equation is a stable (unstable) node, then, in a small neighborhood
of the equilibrium point, the trajectories of the nonlinear state equation will behave like a stable
(unstable) node whether or not the eigenvalues of the linearization are distinct.
Second-Order Systems
A second-order autonomous system is
Z1 = fi(z1,72)
T2 = fo(z1,72)
Qualitative Behavior of Linear Systems

The solution of the linear time-invariant system &= Ax is
x(t) = Me/*M™ 1z (1)

where J,. is the real Jordan form of A. M satisfies
_ A O Ak a —f
1 1
M AM_—JT_—< 0 Ay ), (O )\), or <5 o ) (2)

where k=0or 1.
Case 1 Both eigenvalues are real: A\; # A2 #0.
In this case, M =[v1, 2], where v, and vs are the real eigenvectors associated with A; and Ag.
The change of coordinates z = M ~!z transforms the system into two decoupled equations,

Z1=A121, Z2=Aoz (3)
The solution given initial state (210, 220) is

Zl(t) = 2106/\115, Zg(t) = 2206)‘2t (4)
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when Ao < A1 <0, both 21, and 25 tend to zero as t — 0o. The equilibrium point z =0 is called
a stable node.
when Ay > A1 >0, both 21, and z grow exponentially as ¢ increases. The equilibrium point
x =0 is called an unstable node.
when Ao < 0 < Ay, the equilibrium point 2 =0 is called a saddle.
Case 2. Complex eigenvalues: A\ 2 =a £ j0.
The change of coordinates z = M ~'z transforms the system into the form,

Z1=az1— Bro, Zo=fz1+az (5)

Change variables in the polar coordinates

r=+/22+ 23, 6‘tan1<2> (6)

21
Now we have two uncoupled first-order differential equations
F=ar, 6= (7)
The solution for a given initial state (rg,f) is given by
r(t) =roe®t, O(t)=00+ Bt (8)

which define a logarithmic spiral in the z; — 29 plane. The equilibrium point =0 is referred
to as a stable focus if a <0, unstable focus if a >0, and center if a=0.

Case 3. Nonzero multiple eigenvalues: Ay =A; =A#0.
The change of coordinates z = M ~!z transforms the system into the form,

Z1=Az1+kzo, Zo=Azo (9)
whose solution, for a given initial state (z10, 220), is given by

Zl(t) = e)‘t(210 + k‘Zgot), ZQ(t) = 2206/\75 (10)

(B0 Ry (2
21—22<220 + )\ln<z20>) (11)

The equilibrium point =0 is a stable node if A <0 and unstable node if A > 0.
Case 4. One or both eigenvalues are zero.
When A\ =0and Ag # 0, the change of variable z = M1z results in

the trajectory equation

Z1=0, Za=MA22 (12)
whose solution, for a given initial state (z10, 220), is given by
z1(t) =210,  22(t) = 220! (13)

All trajectories converge to the equilibrium subspace when s < 0, and diverge away from
it when Ay > 0.
When A\; = Ay =0, this is a trivial case where every point in the plane is an equilibrium
point.
,2:1:,22, 22:0 (14)
whose solution is
z21(t) = z10+ z20t,  22(t) =220 (15)

Trajectories starting off the equilibrium subspace move parallel to it.

The node, focus, and saddle equilibrium points are said to be structurally stable because they
maintain their qualitative behavior under infinitesimally small perturbations A + A A, while the
center equilibrium point is not structurally stable.
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Limit Cycles
A system oscillates when it has a nontrivial periodic solution
z(t+T)=z(t), ¥V t=0 (16)

The linear oscillator is not structurally stable, and the amplitude of oscillation is dependent on the
initial conditions. It’s possible to build pysical nonlinear oscillators such that

e The nonlinear oscillator is structurally stable.

e The amplitude of oscillation (at steady state) is independent of initial conditions.
Bifurcation

DEFINITION. Bifurcation is a change in the equilibrium points or periodic orbits, or in their stability
properties, as a parameter is varied. The parameter is called a bifurcation parameter, and the values
at which changes occur are called bifurcation points.

Saddle-node bifurcation.

Transcritical bifurcation.

Supercritical /subcritical pitchfork bifurcation.

Supercritical /subcritical Hopf bifurcation.

Lyapunov Stability

ESTIMATION
Scalar Root Solvers
Bracketed methods in the span [a, b]:
1. Bisection search
ar+b
o = b (1)
2. False position
br—a
Cr, = bk - f(bk)f(b ])C_ flza/k) (2)
3. Ridder’s method
o — a+b
LT

fla)=2f(c1)e® + f(b)e*? = 0
o _ Jle)+sign(f(0)v/f(cr)® - f(a) f(b)

f(®)
co = c1+(b—a)
4. Brent’s method
Unbounded methods:
1. Newton’s method
T
Th41 = zk*—j;((x% (3)
2. Secant method
Tp — Th—
st = o= f e
rp—1f (k) — vef(TK-1) )

f(xk) - f(xk—l)
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Scalar Optimization
Bracketed methods:
1. Golden section
2. Brent’s method
Unbounded methods:

1. Newton’s method

Th41 = xkif”(ﬂﬂk) (5)

Unconstrained Minimization
Most of this chapter is from [1].
min  f(x)
where f: R™ — R is convex and twice continuously differentiable (dom f is open). The optimal
point z* satisfies V f(z*) =0.
Example. The general convex quadratic minimization is

min %xTPx +qlz+r (6)
One special case of the quadratic minimization problem is the least-square problem
min ||Ax —b|?=2T(ATA)z — 2(ATb) Tz + b7b (7)

The optimality condition is
(ATA) 2= AT (8)

DEFINITION. The objective function is strongly convex on S, which means that there exists an
m >0 such that V2f(z) >mlI for all x € S.

For x,y € S we have

o) = F@)+ V@) - o)+ 5y —2) V2 @)y —2)

> f@)+ V@) (y—2)+ Sy -

If we have

mI<V2f(x)<MI (9)
the ratio Kk = M /m is an upper bound on the conditional number of the matrix V2f(x), which is
the ratio of its largest eigenvalue to its smallest eigenvalue.
Descent Method
Descent methods use updates

Tpi1=Tp+ tLAxg (10)
such that f(xgy1) < f(zx). Gradient descent method sets Az =—V f(x), tx can be determined by

1. Exact line search
t = argmin f (xy, + sAxy) (11)

s=0
2. Backtracking line search

Choose a € (0,0.5), 8€(0,1),t=0,
while f(xy + tAzg) > f(zg) + atV f(zp)TAzg, t=pt
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Newton’s method set Az =—V2f(zg) "'V f(zy), check whether

N =3V F () V) TV ) < e (12)
Choose step size t by backtracking line search; update xy1 = x) + tpAxy.
Graph Theory

DEFINITION. Adjacency matriz for an n —node graph G =(V, E) where V. ={v1,va,...,un} is an

n xn matric A= {a;; } where
1 if{v,v;}€E
ij = . 1

i { 0 otherwise. (13)

For a weighted graph with edge weights,

w(v,vy)  if{v,v;}€FE
- j 14
4ij { 0 otherwise. (14)

DEFINITION. If sandt are the node IDs of the source and target nodes of the jth edge in G, then
the incidence matriz is defined as

I; = -1
Iy =1 (15)
DEFINITION. The weighted Laplacian matriz of an undirected graph is defined as
m
L=Y" Idiag(w)I” (16)
i=1

Non-negativity of the weights implies L > 0. Denote the eigenvalues of the Laplacian L as
AL A< <A,

The minimum eigenvalue \; = 0, while the second smallest eigenvalue A5 is called the algebraic
connectivity of G. The larger \q is, the better connected the graph is. Ao > 0 if and only if the graph
is connected. The eigenvector vs associated with Ay is often called the Fiedler vector and widely
used in spectral partitioning. Finally, Ao is closely related to a quantity called the isoperimetric
number or Cheeger constant of G, which measures the degree to which a graph has a bottleneck.

DEFINITION. A directed graph is weakly connected (or just connected) if the undirected underlying
graph by replacing directed edges of the graph with undirected edges is a connected graph (a directed
path from v;tov; or from vjtov; for every pair of vertices {v;,v;}). A directed graph is strongly
connected or strong if it contains both a directed path from v;tov; and a directed path from v;tov;.
The strong components are the maximal strongly connected subgraphs.

The matrix sum S is defined to be
Sp=I+A+ A%+ ...+ AF (17)

If there is a positive integer k such that Sy is positive, then the graph is strongly connected.

DEFINITION. The indegree of i is the number of edges for which i is a head. Similarly, the outdegree
of i is the number of edges for which i is a tail. The transition matriz can be obatained by assigning
weight to an edge from v;tov; with the outdegree of vertexr v; as d;

w(v;, vj) :d%- (18)
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For a strongly connected graph, the transition matrix is column-stochastic. If the weights are
assigned with the indegree of vertices, the transition matrix becomes row-stochastic.

Distributed Gradient Descent

The goal is to minimize

S i) (19)
The main iteration is =l
zi(k+1) Zw”% —aV fizi(k), i=1,2,...,n (20)
For undirected graphs,
r(k+1) = Z w5 (k) = nyi(k) (21)
WO+ = Y w8+ (VA4 1) - V0R) )

<
Il
-

where we can define 7;(k) =V f(k+1) — V f(k) to simplify the equation. In a compact matrix form,

Th1 Wy — nyx (23)
Ye+1 = Wyr+(Vfee1— Vi) (24)

the initial condition is yo=V fo=V f(z); W = {w;;} is a doubly-stochastic matrix. For a directed
graph, this algorithm can be modified as

Th41 = Azi—nyx (25)
Ykr1 = By +(Vfrr1—Vii) (26)

where A=A ® 1, A is a row-stochastic matrix, and B=B ® I, B is a column-stochastic matrix.

Proof. A is irreducible, row-stochastic with positive diagonals then

Ay = lim A*

k— o0

= lim A*@T

k—>oc

(lnﬁz) ®I)((1n7r7T) ®I>
= Ay

We also have

ey = 0B (yk—1+ (V= Vi)
= ('B)@ (IT)(yk—1+ (V fr. — Vfr-1))
= (0 Dyr-1+ QL0 1)(V fr — V fr-1)
= (R DBN(yr—2+ (Vi1- Vi) + QL@ D(V =V fr 1)
= (10 DNyr—2+ 150 1)(V fi — V fr_2)

= (@D (yo+Vfr—V fo)
because yo =V fo, then
(e Dy= 1,9V fi (27)
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The state equation can be expanded as

Tpy1 = Axp—nyk
A(A»’Uk—l—nyk—l)—??yk
= A%rj_1—n(A+ 1)y

= Aktlgy —n(AF+ AF 14+ ADYy,

I — Ak+1
When &k — oo, sum the geometric series and (28) becomes
lim Thy1 = Asero+ ...
k— o0
= (AmD) @ Dag
= (17L(sz0)) ®1 (29)
O
Primal-dual Interior-point Method
The modified KKT condition is
Tdual Vf0($)+Df(x)T/\+ATV
Tt(l',A,V) = Tcent = —dlag()\)f(:r) — (%)1 =0 (30)
T'pri Ax—b

where three components are called dual residual, centrality residual, and primal residual, respec-
tively. Use Newton’s method to solve these nonlinear equations,

ri(y+Ay) = r(y) +Dry)Ay

=0
Dry)Ay = —r(y)
In terms of (x, A, v), we have
Vi fo(x)+ >0  MVifi(x)  Df(x)t AT Az Tdual
—diag(\)Df(x) —diag(f(x)) 0 AN | =—| Teent (31)
A 0 0 Av Tpri

Kalman Filter

QUESTION. (DISCRETIZATION OF KALMAN FILTER)
Given the continuous time system

z = Ax+ Bu (32)
y = Cx+ Du (33)

Try1 = Frp+ Guy (34)
yp = Hap+ Juy (35)

where F,G,H,J are constant.

Answer. Considering the first-order linear ordinary differential equation

y+p)y = q(z) (36)
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the general solution is

yz) = e/ WW( z)dx+ C) (37)
If y(a) =", then the solution is

y(z) = e p<s>d5< IRIGL )d£+b> (38)
Assuming the initial condition of (32) is z(t =0) = x¢, then the solution can be represented as

w(t) = e Jort fﬂg(/ CRTGEE +$°)
_ e_fo(—A)d£</ efo(—A)dCBu(f)d£+xo)
0

eAt</t€_A£ Bu(€)d¢ + 360)
0

= eAtxo—i—eAt/te_AfBu(f)d«f (39)
0

Discretize (39) by setting t =kT,and t = (k+1)T, wherek € Z*,

kT
x(kT) = Akao+eAkT/ e~ A Bu(¢)d¢ (40)
0
(k+1)T
c(k+1)T) = eAk+DT, +eA<k+1>T/ e~ A¢ Bu(&)d¢
0

kT (k+1)T
eAT( AKT,, +eAkT/ e—AfBu(g)dg) k+1>T/ e A8 Bu(&)d¢
0 kT

(k+1)T
Aok T)+ [ A9 Bue)a (41)
kT

where £ € [kT, (k+ 1)T]. Applying zero order hold (ZOH) here, which means u(¢) =u(kT), plus
B is constant, then it’s obtained

c(k+1)T) = eATx(kT)+</( w A+ )T - f>d§>3u(kT) (42)
k

T
Changing variable A= (k+1)T — &, then d{=—dA, and (42) is turned to be

2((k+1)T) = &%(M)-( / ’ eA’\d/\>Bu(kT)

-7
= eATy(kT) + (/OTeAAd)\)Bu(kT) (43)
Define zp41=2((k+1)T), zp=x(kT), (43) is rewritten as
Tha1 = eAT:Ek+</TeA>‘d)\>Buk (44)
which means O
F = AT (45)

T
G = (/ eA’\dA>B (46)
0
where T is the sampling interval.

Further, if A is invertible and constant, (46) can be simplified as

T
G = <A_1/ Ae“”‘dA)B
0

_ A71(6AT76A-0)
= A YeAT-I)B (47)
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The Kalman filter is given by the following equations [5]

Example. If Q,,, Q,~

Py = Fr P Fl + Qi (48)

K, = Py HF(H.P7HE +Ry,)~* (49)
= PFHIR;!

vy = Fr_oaxf_ 14+ Gr_qup_1 (50)

af = + Ki(ye — Hyay) (51)

P = (I-KpHy) Py, (I - KeHp)" + KR K
= (Py) '+ H{R;'Hy)™*
= (I - KgHy) Py (52)

N(p,d?), consider two cases:

Y1 = 2r
Y2 = r1+712

then Qy, ~ N(2u,46%), Qy, ~ N (2p,26%).

Partical Filter

For each particle xg”i)l,

(m)

sample g, from pr(qr—1), then predict

fl(gm) = fk71($§:1)1, Uk —1, QJ(:_%)

Correction is to first compute likelihood (weight):

w;(ﬁ)l = p(yr — hie(wk, ur) ) wi

normalize to compute probability:

M
P =wlh /Y Wiy

m=1

This won’t work because one particle’s weight would converge to 1 and others’ to 0. A resampling
process is needed. Based on the cumulated probability function of the weights, resample to obtain
M particles of uniform probability (Duplicate the particles with high weights and discard the ones
with the least weights). Iterate.

Controllability and Observability

QUESTION. (CONTROLLABILITY)
Can you change the value of all of the states of a system independently by changing the system
inputs (actuator values)?

Answer. Iterate the dynamics equation

T =

F:kal +Guk,1
F(Frp—2+ Gup—2)+ Gup_1

Frro+ FF=1Guo+ FF2Gui+ ...+ FGug_o+ Guj_1

k—1
Fkl‘o—f—z FiGuk_i_l
1=0
Uk —1
Frro+ (G .. FF22G FF'G)|
1

Uo
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APPENDIX
Taylor Series
f@) = 200 0 ap— @) + L0 - a) 4 LA (o s )
foT:rafallxa 5 (& —a
n=0
for multiple variables:
o - S S S R N =
f@) = f@)+(@F-a)TV @) +5(F - a) H(@)(F - a)+ .. (2)
where the Hessian matrix H(x) is
9%f 9% f 9% f
gf Ox10x2 7 Ox10x,
9%f 9%f 9% f
H([L’) - Ox20x1 @ U Oxo0xy,
o2 f o2 f o2f
0zn0x1 OxnOz2 7 Ox2
__oF
Hij = O0x,0x; )
the gradient V f(x) is
of.  of. Of
Vf e + 6‘y'] + ER (4)
Kronecker Product
a11B alnB
A®B= P (5)
amiB ... amnB
properties:
(A®B)(C®D) = (AC)®(BD) (6)
(AeB)™' = A'@B™! (7)
(A®B)T = AT®BT (8)
Determinant and Trace
Determinant properties:
det(I,) = 1 (9)
det(AT) = det(A) (10)
1
-1y _ _ -1
det(A™1) = 3t (A) det(A) (11)
det(AB) = det(A)det(B) (12)
det(cA) = c™det(A) (13)
For a triangular matrix (a;; =0 whenever ¢ > j or alternatively whenever ¢ < j), then
det(A) = H Qg4 (14)
Relation to eigenvalues and trace: =t
det(4) = J] n (15)
i=1
det(A—XI) = 0 (16)
For complex matrices A,
det(e?) = et (17)
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For real matrices A,
tr(A) =In(det(e?))
For a positive definite matrix A,
tr(I — A=Y <logdet(A) <tr(A—1)

If AorD is invertible, then block matrices satisfy,

A B\ _ a1
det( . D) = det(A)det(D —CA~'B)

det(D)det(A — BD~1C)

= det(AD - BC)
Trace
tI‘(A):Z ai; =ai11+ a2+ ...+ ann
properties: =1
tr(A+ B) = tr(A)+tr(B)
tr(cA) = ctr(A)
tr(AB) = tr(BA)
#+ tr(A)tr(B)
tr(A® B) = tr(A)tr(B)
tr(P~1AP) = tr(A)
tr(AF) = Z)\lf
i=1
Norm

General vector norm:

1
N P
loll, = (Z |vk|p>
k=1

where p is any positive real value, Inf, or — Inf.

N
lolh = 7 (o)
k=1

ol = | masx(Jue)
ol = min_ (o)

The maximum absolute column sum of a matrix is defined by

m
[X]1 = max (Z |a¢j|>
1<j<n 4

<isn\
The second-order norm (spectral norm) is defined by
X2 = max(svd(X))
=/ Amax(X7X)
= Omax(A4)
The maximum absolute row sum of a matrix is defined by

n
IXlloo = max > ]
j=1

<is<m

(34)
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The Frobenius norm of a matrix is defined by

X |~

where X is the conjugate transpose, o;(A) are the singualr values of A.

DEFINITION. Let Ay, ..., A, be the eigenvalues of a matriz A€ C™"*™. Then its spectral radius p(A) is

p(A) =max {|A1], | A2, -y [Anl}

The condition number of A can be expressed as k(A) = p(A)p(A~1).

LEMMA. If ||| is a matriz norm on M, then, for any A € M,,

p(A) <Al

Proof. Let A be an eigenvalue of A, %0 be a corresponding eigenvector, we have

AX = X
AIXL = fAX
= [[AX]
< [lAflfIX
Al < 4]
p(A) < [All

Taking the maximum over all eigenvalues A gives the result.

LEMMA. Given A€ M, and £ >0, there exists a matriz norm ||-|| such that

[Al < p(A)+e

LEMMA. The spectral norm of a matriz satisfies

p(4) = if{Afl}
p(A) = lim [[A%|F
k— o0
Singular Value Decomposition
SVD is
A = U x»VvH
mXn mxXmmXnnXn

(41)
(42)

(43)

where the singular values o are always real and nonnegative even if A is complex. ¢ are on the
diagonal of a diagonal matrix ¥ and the corresponding singular vectors form the columns of two

orthogonal matrices U and V.

Example. Apply SVD to a given matrix A

123 14.8512 0 0
A= 749 |=U 0 5.5485 0 Vi
58 2 0 0 1.2864
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The eigenvalues of A are

Thus we have

13.8397 0 0
A=Q 0 —1.4108 0 Q!
0 0 —5.4289

p(A)=13.8397 < 14.8512 = || A2
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