LIANGCHUN XU

Department of Mechanical Engineering, Tufts University 574 Boston Avenue, Medford, 02155, US

 $Email: {\tt liangchun.xu@tufts.edu}$

March 21, 2019

TABLE OF CONTENTS

1.	CALCULUS ON EUCLIDEAN SPACE	2
	1.1. Directional Direvatives 1.2. Vector Fields 1.3. Covariant Direvatives 1.4. Differential Forms 1.5. Tangent Map 1.6. Frame Fields	3 4 7
2.	CALCULUS ON A SURFACE	9
	2.1. Differential Forms on a Surface 2.2. Pullback and Pushforward 2.3. Integration of Forms 2.4. Topological Properties of Surfaces	9 10 10 11
3.	Shape Operators	11
	3.1. Shape Operators of a Surface	11 13
4.	Geometry of Surfaces in \mathbb{R}^3	14
	4.1. Structural Equations for Surfaces 4.2. Isometries	14 16
5 .	RIEMANNIAN GEOMETRY	17
	5.1. Geometric Surfaces 5.2. Covariant Derivative 5.3. Gauss-Bonnet Theorem	17 19 20
6.	Manifolds	23
	6.1. Topological Manifolds 6.2. Categories and Functors 6.3. Tangent Bundle	23 24 24
7.	APPENDIX	25
	7.1. Generalization Map7.2. Notation Table	25 25
D٠	DI IOCD A DIIV	25

1. CALCULUS ON EUCLIDEAN SPACE

1.1. Directional Directives

The directional derivative of a function $f(\mathbf{p})$, with respect to a tangent vector \mathbf{v} is a real number

$$\mathbf{v}[f] \equiv \frac{d}{dt} \Big|_{t=0} f(\mathbf{p} + t\mathbf{v})$$

$$= \sum_{i=0}^{\infty} \mathbf{v}_{i} U_{i}(\mathbf{p})[f]$$

$$= \sum_{i=0}^{\infty} \mathbf{v}_{i} \frac{\partial f}{\partial x_{i}}(\mathbf{p})$$
(1)

The differential df of f is the 1-form such that $df(v_p) = v_p[f]$ for all tangent vector v_p [2].

LEMMA. Let α be a curve in \mathbb{R}^3 and let f be a differentiable function on \mathbb{R}^3 . Then

$$\alpha'(t)[f] = \frac{d(f(\alpha))}{dt}(t) \tag{2}$$

Proof. Since $\alpha' = \left(\frac{d\alpha_1}{dt}, \frac{d\alpha_2}{dt}, \frac{d\alpha_3}{dt}\right)$, then by definiton of directional derivative,

$$\alpha'(t)[f] = \sum_{i} \frac{d\alpha_{i}}{dt}(t) \frac{\partial f}{\partial x_{i}}(\alpha(t)) = \frac{d(f(\alpha))}{dt}(t)$$

Two useful identities are

$$U_i[f] = \frac{\partial f}{\partial x_i} \tag{3}$$

$$dx_i(v) = v_i (4)$$

Differential forms on \mathbb{R}^3 have the following 1-1 correspondences: 0-forms can be identified with scalar functions; 1-forms can be identified with vector fields; 2-forms can also be identified with vector fields via right-hand rule; 3-forms can be identified with scalar functions.

$$\sum_{i} f_{i} dx_{i} \stackrel{(1)}{\longleftrightarrow} \sum_{i} f_{i} U_{i} \stackrel{(2)}{\longleftrightarrow} f_{1} dx_{2} dx_{3} + f_{2} dx_{3} dx_{1} + f_{3} dx_{1} dx_{2}$$

Therefore we have

$$f = f(x_1, ..., x_i, ...)$$

$$df \stackrel{(1)}{\longleftrightarrow} \operatorname{grad} f$$

$$= \sum_{i} \frac{\partial f}{\partial x_i} U_i$$

$$V = \sum_{i} f_i U_i$$
(5)

If an 1 form $\phi \stackrel{(1)}{\longleftrightarrow} V$, then $d\phi \stackrel{(2)}{\longleftrightarrow} \operatorname{curl} V$

$$= \left(\frac{\partial f_3}{\partial x_2} - \frac{\partial f_2}{\partial x_3}\right) U_1 + \left(\frac{\partial f_1}{\partial x_3} - \frac{\partial f_3}{\partial x_1}\right) U_2 + \left(\frac{\partial f_2}{\partial x_1} - \frac{\partial f_1}{\partial x_2}\right) U_3 \tag{6}$$

If a2 form $\eta \stackrel{(1)}{\longleftrightarrow} V$, then $d\eta = (\text{div } V) dx dy dz$

$$= \left(\sum_{i} \frac{\partial f_i}{\partial x_i}\right) dx \, dy \, dz \tag{7}$$

The correspondences can be summarized as follows.

$$\begin{array}{lll} \text{0-form} & f \mapsto \nabla f & \text{gradient} \\ \text{1-form} & \omega \mapsto d\omega & V \mapsto \nabla \times V & \text{curl} \\ \text{2-form} & V \mapsto \nabla \cdot V & \text{divergence} \\ \text{0-form} & d(d\omega) = 0 & \nabla \times (\nabla f) = 0 \\ \text{1-form} & d(d\omega) = 0 & \nabla \cdot (\nabla \times V) = 0 \end{array}$$

Table 1. Correspondences between forms and functions, vector fields

In summary, on an open subset U of \mathbb{R}^3 , there are identifications

1.2. Vector Fields

A vector field W on an open subset U of \mathbb{R}^n is a function that assigns to each point p in U a tangent vector W_p in $T_p(\mathbb{R}^n)$ [4].

$$\mathbf{W}_{p} = \sum_{i} w^{i}(\mathbf{p}) \frac{\partial}{\partial x^{i}} \bigg|_{p} \tag{8}$$

where w^i are real-valued functions on U. Define a new function $\mathbf{W}f$ on U by

$$(\mathbf{W}f)(\mathbf{p}) = \mathbf{W}_p f = \sum_{i} w^i(\mathbf{p}) \frac{\partial f}{\partial x^i} \bigg|_{p}$$
(9)

or simply

$$\mathbf{W}f = \sum w^{i} \frac{\partial f}{\partial x^{i}} \tag{10}$$

1.3. Covariant Direvatives

The covariant derivative of a vector field $W = \sum w_i U_i$ with respect to a tangent vector \mathbf{v} is the tangent vector

$$\nabla_{v} \mathbf{W} \equiv \frac{d}{dt} \Big|_{t=0} \mathbf{W}(\mathbf{p} + t\mathbf{v})$$

$$= \sum_{\mathbf{v}} \mathbf{v}[w_{i}] U_{i}(\mathbf{p})$$

$$= \begin{pmatrix} \mathbf{v}[w_{1}] \\ \mathbf{v}[w_{2}] \\ \mathbf{v}[w_{3}] \end{pmatrix}$$
(11)

Example. suppose $W = x^2U_1 + yzU_3$, and $\mathbf{v} = (-1, 0, 2)$ at $\mathbf{p} = (2, 1, 0)$, then

$$\mathbf{p} + t\mathbf{v} = (2 - t, 1, 2t)$$

$$\mathbf{W}(\mathbf{p} + t\mathbf{v}) = (2 - t)^{2}U_{1} + 2tU_{3}$$

$$\nabla_{v}\mathbf{W} = \mathbf{W}(\mathbf{p} + t\mathbf{v})'(0)$$

$$= -4U_{1} + 2U_{3}$$

The covariant derivative of a vector field $m{W}$ with respect to a vector field $m{V}$ is the vector field

$$\nabla_V \mathbf{W} = \sum_i \mathbf{V}[w_i] U_i \tag{12}$$

Example. suppose $\mathbf{W} = x^2U_1 + yzU_3$, and $\mathbf{V} = (y - x)U_1 + xyU_3$, then

$$V[x^2] = (y-x)U_1[x^2]$$

= $2x(y-x)$
 $V[yz] = xyU_3[yz]$
= xy^2
 $\nabla_V W = 2x(y-x)U_1 + xy^2U_3$

THEOREM. Let \mathbf{v} and \mathbf{w} be tangent vectors to \mathbb{R}^3 at \mathbf{p} , and let \mathbf{Y} and \mathbf{Z} be vector fields on \mathbb{R}^3 . Then for numbers a, b and functions f,

$$\nabla_{av+bw}Y = a\nabla_{v}Y + b\nabla_{w}Y$$

$$\nabla_{v}(aY+bZ) = a\nabla_{v}Y + b\nabla_{v}Z$$

$$\nabla_{v}(fY) = v[f]Y(\mathbf{p}) + f(\mathbf{p})\nabla_{v}Y$$

$$v[Y \cdot Z] = \nabla_{v}Y \cdot Z(\mathbf{p}) + Y(\mathbf{p}) \cdot \nabla_{v}Z$$

1.4. Differential Forms

DEFINITION. The alternating multilinear functions with k arguments on a vector space are called multicovectors of degree k, or k – covectors for short.

DEFINITION. A 1-form ϕ on \mathbb{R}^3 is a real-valued function on the set of all tangent vectors to \mathbb{R}^3 such that ϕ is linear at each point, that is,

$$\phi(a\mathbf{v} + b\mathbf{w}) = a\phi(\mathbf{v}) + b\phi(\mathbf{w})$$

for any numbers a, b and tangent vectors \mathbf{v}, \mathbf{w} at the same point of \mathbb{R}^3 .

Let f and g be real-valued functions on \mathbb{R}^2 . It's proved that

$$df \wedge dg = \begin{vmatrix} \frac{\partial f}{\partial x} & \frac{\partial f}{\partial y} \\ \frac{\partial g}{\partial x} & \frac{\partial g}{\partial y} \end{vmatrix} dx dy \tag{13}$$

Therefore we have

$$dy \wedge dx = \begin{vmatrix} \frac{\partial y}{\partial x} & \frac{\partial y}{\partial y} \\ \frac{\partial x}{\partial x} & \frac{\partial x}{\partial y} \end{vmatrix} dx dy$$

$$dy dx = \begin{vmatrix} 0 & 1 \\ 1 & 0 \end{vmatrix} dx dy$$

$$dy dx = -dx dy \tag{14}$$

THEOREM. Let f and g be functions (0-forms), ϕ and ψ are 1-forms. Then

$$d(fg) = (df)g + f(dg)$$

$$d(f\phi) = df \wedge \phi + fd\phi$$

$$d(\phi \wedge \psi) = d\phi \wedge \psi - \phi \wedge d\psi$$

More generally, if ξ is a p-form and η is a q-form, then

$$\boldsymbol{\xi} \wedge \boldsymbol{\eta} = (-1)^{pq} \boldsymbol{\eta} \wedge \boldsymbol{\xi} \tag{15}$$

$$d(\boldsymbol{\xi} \wedge \boldsymbol{\eta}) = (d\boldsymbol{\xi}) \wedge \boldsymbol{\eta} + (-1)^p \boldsymbol{\xi} \wedge (d\boldsymbol{\eta})$$
(16)

DEFINITION. If $\phi = \sum f_i dx_i$ is a 1-form on \mathbb{R}^3 , the exterior derivative of ϕ is the 2-form $d\phi = \sum df_i \wedge dx_i$.

$$d\phi = \left(\frac{\partial f_2}{\partial x_1} - \frac{\partial f_1}{\partial x_2}\right) dx_1 dx_2 + \left(\frac{\partial f_3}{\partial x_2} - \frac{\partial f_2}{\partial x_3}\right) dx_2 dx_3 + \left(\frac{\partial f_1}{\partial x_3} - \frac{\partial f_3}{\partial x_1}\right) dx_3 dx_1$$

Let g be a real-valued function on \mathbb{R}^3 , then we have

$$dg = \sum_{i} \frac{\partial g}{\partial x_i} dx_i$$
$$= \sum_{i} f_i dx_i$$
$$f_i = \frac{\partial g_i}{\partial x_i}$$

then we have

$$\left(\frac{\partial f_2}{\partial x_1} - \frac{\partial f_1}{\partial x_2}\right) dx_1 dx_2 = \left(\frac{\partial}{\partial x_1} \frac{\partial g}{\partial x_2} - \frac{\partial}{\partial x_2} \frac{\partial g}{\partial x_1}\right) dx_1 dx_2 = 0$$

$$d(dg) = \left(\frac{\partial f_2}{\partial x_1} - \frac{\partial f_1}{\partial x_2}\right) dx_1 dx_2 + \left(\frac{\partial f_3}{\partial x_2} - \frac{\partial f_2}{\partial x_3}\right) dx_2 dx_3 + \left(\frac{\partial f_1}{\partial x_3} - \frac{\partial f_3}{\partial x_1}\right) dx_3 dx_1$$

$$d(dg) = 0 \tag{17}$$

The property holds in more generality: in fact, $d(d\alpha) = 0$ for any k-form α ; more succinctly, $d^2 = 0$. A k - form ω on U is closed if $d\omega = 0$; it's exact if there is a (k-1) - form τ such that $\omega = d\tau$ on U. Since $d(d\tau) = 0$, every exact form is closed.

Example. (MAXWELL'S EQUATION) For connection form ω , we have its exterior derivative [1]

$$\Omega = d\omega, d\Omega = d(d\omega) = 0$$

When S is 4-dimensional Lorenz manifold, then we have

$$ds^2 = -dx_0^2 + dx_1^2 + dx_2^2 + dx_3^2$$

Let $\Omega = \frac{1}{2} \sum F_{ij} dx_i \wedge dx_j$, where $F_{ij} = -F_{ji}$ is a 2-form [5], and the electromagnetic four-potential A is a 1-form including an electric scalar potential and a magnetic vector potential.

$$A \stackrel{\text{(1)}}{\longleftrightarrow} \left(\frac{\phi}{c}, \mathbf{A}\right)$$

$$F \stackrel{\text{def}}{=} dA$$

$$F_{ij} = \frac{\partial A_i}{\partial x_j} - \frac{\partial A_j}{\partial x_i}$$

$$F_{ij} = \begin{pmatrix} 0 & E_1 & E_2 & E_3 \\ -E_1 & 0 & -B_3 & B_2 \\ -E_2 & B_3 & 0 & -B_1 \\ -E_3 & -B_2 & B_1 & 0 \end{pmatrix}$$

For ds^2 , there is the operator \star such that $d^{\star} = \star d\star$. If $j = (j_1, j_2, j_3)$, then

$$J = -\rho dx_1 dx_2 dx_3 + dx_0 (j_1 dx_2 dx_3 + j_2 dx_3 dx_1 + j_3 dx_1 dx_2)$$

Since $dF_{ij} \wedge dx_i \wedge dx_j$ is

$$\begin{pmatrix} 0 & dE_{1} \wedge dx_{0} \wedge dx_{1} & dE_{2} \wedge dx_{0} \wedge dx_{2} & dE_{3} \wedge dx_{0} \wedge dx_{3} \\ -dE_{1} \wedge dx_{1} \wedge dx_{0} & 0 & -dB_{3} \wedge dx_{1} \wedge dx_{2} & dB_{2} \wedge dx_{1} \wedge dx_{3} \\ -dE_{2} \wedge dx_{2} \wedge dx_{0} & dB_{3} \wedge dx_{2} \wedge dx_{1} & 0 & -dB_{1} \wedge dx_{2} \wedge dx_{3} \\ -dE_{3} \wedge dx_{3} \wedge dx_{0} & -dB_{2} \wedge dx_{3} \wedge dx_{1} & dB_{1} \wedge dx_{3} \wedge dx_{2} & 0 \end{pmatrix}$$

Moreover

$$\begin{split} dE_1 \wedge dx_0 \wedge dx_1 &= \left(\frac{\partial E_1}{\partial x_0} dx_0 + \frac{\partial E_1}{\partial x_1} dx_1 + \frac{\partial E_1}{\partial x_2} dx_2 + \frac{\partial E_1}{\partial x_3} dx_3 \right) \wedge dx_0 \wedge dx_1 \\ &= \frac{\partial E_1}{\partial x_2} dx_2 \wedge dx_0 \wedge dx_1 + \frac{\partial E_1}{\partial x_3} dx_3 \wedge dx_0 \wedge dx_1 \\ &= \frac{\partial E_1}{\partial x_2} dx_0 \wedge dx_1 \wedge dx_2 + \frac{\partial E_1}{\partial x_3} dx_0 \wedge dx_1 \wedge dx_3 \end{split}$$

Similarly we have

$$dE_2 \wedge dx_0 \wedge dx_2 = -\frac{\partial E_2}{\partial x_1} dx_0 \wedge dx_1 \wedge dx_2 + \frac{\partial E_2}{\partial x_3} dx_0 \wedge dx_2 \wedge dx_3$$

$$dE_3 \wedge dx_0 \wedge dx_3 = -\frac{\partial E_3}{\partial x_1} dx_0 \wedge dx_1 \wedge dx_3 - \frac{\partial E_3}{\partial x_2} dx_0 \wedge dx_2 \wedge dx_3$$

$$-dB_3 \wedge dx_1 \wedge dx_2 = -\frac{\partial B_3}{\partial x_0} dx_0 \wedge dx_1 \wedge dx_2 - \frac{\partial B_3}{\partial x_3} dx_1 \wedge dx_2 \wedge dx_3$$

$$dB_2 \wedge dx_1 \wedge dx_3 = \frac{\partial B_2}{\partial x_0} dx_0 \wedge dx_1 \wedge dx_3 - \frac{\partial B_2}{\partial x_2} dx_1 \wedge dx_2 \wedge dx_3$$

$$-dB_1 \wedge dx_2 \wedge dx_3 = -\frac{\partial B_1}{\partial x_0} dx_0 \wedge dx_2 \wedge dx_3 - \frac{\partial B_1}{\partial x_1} dx_1 \wedge dx_2 \wedge dx_3$$

DIFFERENTIAL GEOMETRY

Therefore

$$d\Omega = \frac{1}{2}d\left(\sum F_{ij}dx_{i} \wedge dx_{j}\right)$$

$$= \frac{1}{2}\sum dF_{ij} \wedge dx_{i} \wedge dx_{j}$$

$$= \left(\frac{\partial E_{1}}{\partial x_{2}} - \frac{\partial E_{2}}{\partial x_{1}} - \frac{\partial B_{3}}{\partial x_{0}}\right)dx_{0} \wedge dx_{1} \wedge dx_{2} + \left(\frac{\partial E_{1}}{\partial x_{3}} - \frac{\partial E_{3}}{\partial x_{1}} + \frac{\partial B_{2}}{\partial x_{0}}\right)dx_{0} \wedge dx_{1} \wedge dx_{3} + \left(\frac{\partial E_{2}}{\partial x_{3}} - \frac{\partial E_{3}}{\partial x_{2}} - \frac{\partial B_{1}}{\partial x_{0}}\right)dx_{0} \wedge dx_{2} \wedge dx_{3} + \left(-\frac{\partial B_{3}}{\partial x_{3}} - \frac{\partial B_{2}}{\partial x_{2}} - \frac{\partial B_{1}}{\partial x_{1}}\right)dx_{1} \wedge dx_{2} \wedge dx_{3}$$

Because $d\Omega = 0$, thus we have

$$\left(\frac{\partial E_1}{\partial x_2} - \frac{\partial E_2}{\partial x_1} - \frac{\partial B_3}{\partial x_0}\right) dx_0 dx_1 dx_2 = 0 \tag{18}$$

$$\left(\frac{\partial E_1}{\partial x_3} - \frac{\partial E_3}{\partial x_1} + \frac{\partial B_2}{\partial x_0}\right) dx_0 dx_1 dx_3 = 0$$

$$\left(\frac{\partial E_2}{\partial x_3} - \frac{\partial E_3}{\partial x_2} - \frac{\partial B_1}{\partial x_0}\right) dx_0 dx_2 dx_3 = 0$$
(20)

$$\left(\frac{\partial E_2}{\partial x_3} - \frac{\partial E_3}{\partial x_2} - \frac{\partial B_1}{\partial x_0}\right) dx_0 dx_2 dx_3 = 0 \tag{20}$$

and

$$-\frac{\partial B_3}{\partial x_3} - \frac{\partial B_2}{\partial x_2} - \frac{\partial B_1}{\partial x_1} = 0 \Rightarrow \nabla \cdot B = 0$$
 (21)

Given $x_0 = t$, -(18)+(19)-(20) is

$$\frac{\partial B}{\partial t} + \begin{vmatrix} dx_0 dx_2 dx_3 & dx_0 dx_1 dx_3 & dx_0 dx_1 dx_2 \\ \frac{\partial}{\partial x_1} & \frac{\partial}{\partial x_2} & \frac{\partial}{\partial x_3} \\ E_1 & E_2 & E_3 \end{vmatrix} = 0$$

$$\frac{\partial B}{\partial t} + \nabla \times E = 0 \tag{22}$$

Using $d^*\Omega = 4\pi J$, we have

$$\nabla \cdot E = 4\pi \rho \tag{23}$$

$$\nabla \times B - \frac{\partial E}{\partial t} = 4\pi j \tag{24}$$

where $t = x_0$, $E = (E_1, E_2, E_3)$ is the electric field, $B = (B_1, B_2, B_3)$ is the magnetic field, ρ is the charge density, j is the current density. Moreover, $\rho dx_1 \wedge dx_2 \wedge dx_3$ is the charge, $j_1dx_2dx_3 + j_2dx_3dx_1 + j_3dx_1dx_2$ is the electric flux $j \cdot dS$. $dx_0 \wedge (j \cdot dS)$ is the electric current through surface dS. Using $d^2 = 0$, we have dJ = 0, which is the law of charge conservation, also known as continuity equation,

$$dJ = -d\rho dx_1 dx_2 dx_3 + d(dx_0(j_1 dx_2 dx_3 + j_2 dx_3 dx_1 + j_3 dx_1 dx_2))$$

$$= -d\rho dx_1 dx_2 dx_3 + d(j_1 dx_0 dx_2 dx_3 + j_2 dx_0 dx_3 dx_1 + j_3 dx_0 dx_1 dx_2)$$

$$= -\frac{\partial \rho}{\partial x_0} dx_0 dx_1 dx_2 dx_3 + dj_1 dx_0 dx_2 dx_3 - dj_2 dx_0 dx_1 dx_3 + dj_3 dx_0 dx_1 dx_2$$

$$= -\frac{\partial \rho}{\partial t} dx_0 dx_1 dx_2 dx_3 + \frac{\partial j_1}{\partial x_1} dx_1 dx_0 dx_2 dx_3 - \frac{\partial j_2}{\partial x_2} dx_2 dx_0 dx_1 dx_3 + \frac{\partial j_3}{\partial x_3} dx_3 dx_0 dx_1 dx_2$$

$$= -\left(\frac{\partial \rho}{\partial t} + \frac{\partial j_1}{\partial x_1} + \frac{\partial j_2}{\partial x_2} + \frac{\partial j_3}{\partial x_3}\right) dx_0 dx_1 dx_2 dx_3$$

$$= -\left(\frac{\partial \rho}{\partial t} + \nabla \cdot j\right) dx_0 dx_1 dx_2 dx_3$$

Thus we have

$$\frac{\partial \rho}{\partial t} + \nabla \cdot j = 0$$

1.5. Tangent Map

Let $F = (f_1, f_2, ..., f_m)$ be a mapping from \mathbb{R}^n to \mathbb{R}^m . If \mathbf{v}_p is a tangent vector to \mathbb{R}^n at p, then

$$F_*(\mathbf{v}) = (\mathbf{v}[f_1], ..., \mathbf{v}[f_m]) \text{ at } F(p)$$
(25)

If $\beta = F(\alpha(t))$ is the image of a curve α in \mathbb{R}^n , then $\beta' = F_*(\alpha')$.

1.6. Frame Fields

THEOREM. If $\beta: I \to \mathbb{R}^3$ is a unit-speed curve with curvature $\kappa > 0$ and torsion τ , then

$$\begin{pmatrix} T' \\ N' \\ B' \end{pmatrix} = \begin{pmatrix} 0 & \kappa & 0 \\ -\kappa & 0 & \tau \\ 0 & -\tau & 0 \end{pmatrix} \begin{pmatrix} T \\ N \\ B \end{pmatrix}$$
 (26)

DEFINITION. If E_i is a frame on \mathbb{R}^3 , $v \in T_p(\mathbb{R}^3)$, then $v = \sum v_i E_i$, define 1-form θ_i : $T_p(\mathbb{R}^3) \to \mathbb{R}$, $\theta_i(v) = v_i$. $\theta_1, \theta_2, \theta_3$ are the dual 1-forms of E_1, E_2, E_3 .

Definition. Attitude matrix A connects two frame fields as

$$E = AU \tag{27}$$

where $A = [a_{ij}] \in SO_n$.

Definition. Connection form ω is defined in

$$\nabla_v E = \omega E \tag{28}$$

Because $\nabla_v E_i = \sum_{j=1}^3 \omega_{ij} E_j$, we have

$$\omega_{ij} = (\nabla_v E_i) \cdot E_j$$

$$= \left(\sum_{k=1}^3 v[a_{ik}] U_k\right) \cdot \left(\sum_{l=1}^3 a_{jl} U_l\right)$$

$$= \sum_{k=1}^3 v[a_{ik}] a_{jk}$$

$$= \sum_{k=1}^3 d a_{ik}(v) a_{jk}$$

In matrix form, it's written as

$$\omega = (dA)A^T \tag{29}$$

 ω is a skew symmetric matrix. Because

$$AA^{T} = I$$

$$d(AA^{T}) = 0$$

$$(dA)A^{T} + A(dA^{T}) = 0$$

$$(dA)A^{T} + ((dA)A^{T})^{T} = 0$$

$$(dA)A^{T} = -((dA)A^{T})^{T}$$

$$\omega = -\omega^{T}$$
(30)

Example. Find the connection form of the cylindrical frame field.

$$\begin{pmatrix} E_1 \\ E_2 \\ E_3 \end{pmatrix} = \begin{pmatrix} \cos(\theta) & \sin(\theta) & 0 \\ -\sin(\theta) & \cos(\theta) & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} U_1 \\ U_2 \\ U_3 \end{pmatrix}$$

So we have

$$A^{T} = \begin{pmatrix} \cos(\theta) & -\sin(\theta) & 0\\ \sin(\theta) & \cos(\theta) & 0\\ 0 & 0 & 1 \end{pmatrix} \qquad dA = \begin{pmatrix} -\sin(\theta)d\theta & \cos(\theta)d\theta & 0\\ -\cos(\theta)d\theta & -\sin(\theta)d\theta & 0\\ 0 & 0 & 0 \end{pmatrix}$$

DIFFERENTIAL GEOMETRY

The connection form is

$$\omega = (dA)A^{T} = \begin{pmatrix} 0 & d\theta & 0 \\ -d\theta & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
 (31)

DEFINITION. Denoting the vector space of all linear maps $f: V \to W$, where V, W are real vector spaces, the dual space of V is $V^{\vee} = \text{Hom}(V, \mathbb{R})$.

DEFINITION. If E_i is a frame field, then the dual 1-forms θ_i of the frame field are the 1-forms s.t.

$$\theta_i(v) = v \cdot E_i = v_i \tag{32}$$

for each tangent vector v to \mathbb{R}^3 at p. It satisfies

$$\theta_i(E_j) = E_i \cdot E_j = \delta_{ij} \tag{33}$$

LEMMA. Any 1-form ϕ on \mathbb{R}^3 in a frame field E_i has a unique expression

$$\phi = \sum \phi(E_i)\theta_i \tag{34}$$

Proof. Apply to any tagent vector v,

$$(\sum \phi(E_i)\theta_i)(v) = \sum \phi(E_i)\theta_i(v)$$

$$= \sum v_i\phi(E_i)$$

$$= \phi(\sum v_iE_i)$$

$$= \phi(v)$$

Generally $\sum \phi(E_i)\theta_i = \phi$.

Example. In particular, if we choose $E_i = U_i$, $\theta_i = dx_i$, then by (34),

$$\phi = \sum \phi(U_i)dx_i \tag{35}$$

for $E_i = \sum a_{ij}U_j$, the dual formulation is just $\theta_i = \sum a_{ij}dx_j$. This is because,

$$\theta_{i}(U_{j}) = U_{j} \cdot E_{i}$$

$$= U_{j} \cdot \left(\sum_{k} a_{ik} U_{k}\right)$$

$$= \sum_{k} a_{ik} \delta_{kj}$$

$$= a_{ij}$$

From (35) we have

$$\theta_i = \sum \theta_i(U_j) dx_j = \sum a_{ij} dx_j$$

or in matrix form

$$\theta = A \, d\xi \tag{36}$$

where
$$\theta = \begin{pmatrix} \theta_1 \\ \theta_2 \\ \theta_3 \end{pmatrix}$$
, $d\xi = \begin{pmatrix} dx_1 \\ dx_2 \\ dx_3 \end{pmatrix}$.

PROPOSITION. The functions $\theta_1, \theta_2, ..., \theta_n$ form a basis for V^{\vee} . The basis $\theta_1, \theta_2, ..., \theta_n$ for V^{\vee} is said to be dual to the basis $E_1, E_2, ..., E_n$ for V.

Theorem. Cartan structural equations

$$d\theta_i = \sum_i \omega_{ij} \wedge \theta_j \tag{37}$$

$$d\theta_i = \sum_j \omega_{ij} \wedge \theta_j$$

$$d\omega_{ij} = \sum_k \omega_{ik} \wedge \omega_{kj}$$
(37)

Proof. By (36), then

$$d\theta = d(Ad\xi)$$

$$= (dA) \wedge (d\xi) + Ad(d\xi)$$

$$= ((dA)A^{T})(Ad\xi)$$

$$= \omega\theta$$

Use $\omega = (dA)A^T$, then

$$d\omega = d((dA)A^{T})$$

$$= d(A^{T}(dA))$$

$$= (d(A^{T}))(dA)$$

$$= -(dA)(d(A^{T}))$$

$$= ((dA)A^{T})(-Ad(A^{T}))$$

$$= \omega(-\omega^{T})$$

$$= \omega\omega$$

2. Calculus on a Surface

2.1. Differential Forms on a Surface

A 0-form f on a surface M is simply a differentiable real-valued function on M, and 1-form ϕ on M is a real-valued function on tangent vectors to M that is linear at each point. A 2-form η on a surface M is a real-valued function on all ordered pairs of tangent vectors v, w to M such that

- 1. $\eta(v, w)$ is linear in v and in w;
- 2. $\eta(v, w) = -\eta(w, v)$.

According to the definition, $\eta(v,v) = 0$. The 2-form satisfies

$$\eta(a\mathbf{v} + b\mathbf{w}, c\mathbf{v} + d\mathbf{w}) = \begin{vmatrix} a & b \\ c & d \end{vmatrix} \eta(\mathbf{v}, \mathbf{w}) = (ad - bc)\eta(\mathbf{v}, \mathbf{w}) \tag{39}$$

the wedge product of two 1-forms $\phi \wedge \psi$ is the 2-form on M such that

$$(\phi \wedge \psi)(v, w) = \phi(v)\psi(w) - \phi(\omega)\psi(v)$$

for all pairs v, w of tangent vectors to M. Let r^1, r^2 be standard coordinates on \mathbb{R}^2 , and let D be an open set in \mathbb{R}^2 . If $\mathbf{x}: D \to M$ is a proper patch for a surface M and U = x(D), let $\mathbf{x}^{-1} = (x^1, x^2)$: $U \to \mathbb{R}^2$, where x^1, x^2 are the two function components of \mathbf{x}^{-1} and we can write $x^i = r^i \circ \mathbf{x}^{-1}$. We call U a coordinate open set and x^1, x^2 coordinate functions on U. Define the tangent vectors $\partial / \partial x^i$ at $p = \mathbf{x}(u_0, v_0)$ by

$$\left. \frac{\partial}{\partial x^{i}} \right|_{p} = \mathbf{x}_{*} \left(\left. \frac{\partial}{\partial r^{i}} \right|_{(u_{0}, v_{0})} \right)$$

where $\partial/\partial x^1 = \mathbf{x}_*(U_1) = \mathbf{x}_u$, $\partial/\partial x^2 = \mathbf{x}_*(U_2) = \mathbf{x}_v$. The partial derivative of f with respect to the coordinate x^i can be calculated via bringing it back to \mathbb{R}^2 :

$$\frac{\partial}{\partial x^i} f = \left(\mathbf{x}_* \frac{\partial}{\partial r^i}\right) (f) = \frac{\partial}{\partial r^i} (f \circ \mathbf{x}) \tag{40}$$

The 1-forms dx^1, dx^2 are dual to the tangent vectors $\partial/\partial x^1, \partial/\partial x^2$ at every point of U. Therefore, every 1-form ϕ on the surface M is $\sum f_i dx^i$ on U and every 2-form on the surface is $f dx^1 \wedge dx^2$ on U for some functions f_i and f on U. The exterior derivative of a 1-form $\phi = \sum f_i dx^i$ is

$$d\phi = \sum df_i \wedge dx^i \tag{41}$$

This definition depends on the choice of a coordinate patch \mathbf{x} , but it can be shown that it's in fact independent of coordinate patches.

2.2. Pullback and Pushforward

 F^*g is the function on M such that

$$F^*g = g \circ F \tag{42}$$

If ϕ is a 1-form on N, $F^*\phi$ is the 1-form on M such that

$$(F^*\phi)(\mathbf{v}) = \phi(F_*\mathbf{v}) \tag{43}$$

If η is a 2-form on N, let $F^*\eta$ be the 2-form on M such that

$$(F^*\eta)(\boldsymbol{v}, \boldsymbol{w}) = \eta(F_*\boldsymbol{v}, F_*\boldsymbol{w}) \tag{44}$$

Let ξ and η be forms on N, the pullback operation satisfies

$$F^*(\boldsymbol{\xi} + \boldsymbol{\eta}) = F^*\boldsymbol{\xi} + F^*\boldsymbol{\eta}$$
$$F^*(\boldsymbol{\xi} \wedge \boldsymbol{\eta}) = F^*\boldsymbol{\xi} \wedge F^*\boldsymbol{\eta}$$
$$F^*(d\boldsymbol{\xi}) = d(F^*\boldsymbol{\xi})$$

Let $F: M \to N$ be a mapping of surfaces. If g is a 0-form on N, F_*g is the function on M such that

$$F_*g = g \circ F^{-1} \tag{45}$$

Proof. Choose a point p on M, then

$$\begin{array}{rcl} F_*(g(p)) & = & g(p) \\ & = & g \circ F^{-1}(F(p)) \\ F_*g & = & g \circ F^{-1} \end{array}$$

Further we have $F_*(gv) = g \circ F^{-1}F_*(v)$. However, if g is a function on the curve g = g(t), then $F_*g = g$.

2.3. Integration of Forms

Let ϕ be a 1-form on M, and let $\alpha:[a,b]\to M$ be a curve segment on a surface M. Then

$$\int_{\alpha} \phi = \int_{[a,b]} \alpha^* \phi = \int_a^b \phi(\alpha'(t)) dt \tag{46}$$

Particularly we have

$$\int_{\alpha} df = f(\alpha(b)) - f(\alpha(a)) \tag{47}$$

Example. If $f = uv^2$, $\phi = df = v^2du + 2uvdv$, and α is the curve segment given by $\alpha(t) = (t, t^2)$, then we have

$$\begin{split} \alpha'(t) &= (1,2t) \\ \int_{\alpha} \phi &= \int_{a}^{b} \phi(\alpha'(t)) dt \\ &= \int_{-1}^{1} (t^{2})^{2} du \left(\alpha'(t)\right) + 2t * t^{2} dv (\alpha'(t)) dt \\ &= \int_{-1}^{1} (t^{4} * 1 + 2t * t^{2} * 2t) dt \\ &= \int_{-1}^{1} (5t^{4}) dt \\ &= t^{5}|_{-1}^{1} \\ &= 2 \\ &= f(\alpha(1)) - f(\alpha(-1)) \end{split}$$

Let η be a 2-form on M, and let $\mathbf{x}: [a,b] \times [c,d] \to M$ be a 2-segment (differentiable but need not be 1-1 or regular) on a surface M. Then

$$\int_{\mathbf{x}} \eta = \int \int_{R} \mathbf{x}^* \eta = \int_{a}^{b} \int_{c}^{d} \eta(\mathbf{x}_u, \mathbf{x}_v) dt$$
(48)

Theorem. (Stokes' theorem) If ϕ is a 1-form on M, and \mathbf{x} : $[a,b] \times [c,d] \to M$ is a 2-segment,

where
$$\int_{\partial \mathbf{x}} \phi = \int_{\alpha} \phi + \int_{\beta} \phi - \int_{\gamma} \phi - \int_{\delta} \phi$$
. (49)

By convention, if $k \neq k'$, the integral of a k – dimensional form on a k' – dimensional surface is understood to be zero [3].

It should be noted that

$$\iint_{A} f dx \wedge dy = \iint_{A} f dx dy = \iint_{A} f dy dx = -\iint_{A} f dy \wedge dx \tag{50}$$

2.4. Topological Properties of Surfaces

Definition. M is path-connected if any two points on M can be joined by a path.

Definition. M is compact if every open cover of M has a finite subcover.

Example. An open cover $\left\{\left(\frac{1}{n},1\right)\right\}_{n=2}^{\infty}$ does not have a finite subcover. So (0,1) is not compact.

THEOREM. A subset of \mathbb{R}^n is compact iff it's closed and bounded.

Example. A sphere is closed and bounded, so it's compact.

THEOREM. A continuous function on a compact space attains a maximum and a minimum.

Example. A Cylinder $S^1 \times (-1,1)$ is not compact, so there is no maximum.

DEFINITION. A surface is orientable if there is a 2-form η on M that's never 0 at any point.

Proposition. A surface M is orientable iff it has a continuous unit normal vector field.

Proof. Let U(p) be a continuous unit normal vector field for $p \in M$. Define $\phi_p(v, w) = U_p \cdot (v \times w) = \det[U_p, v, w]$ is bilinear in v, w and alternating. If v, w are independent, then U_p, v, w are independent and $\phi_p(v, w) \neq 0$.

3. Shape Operators

3.1. Shape Operators of a Surface

DEFINITION. If \mathbf{p} is a point of M, then for each tangent vector \mathbf{v} to M at \mathbf{p} , let

$$S_p(\mathbf{v}) = -\nabla_{\mathbf{v}}U$$

where U is a unit normal vector field on a neighborhood of \mathbf{p} in M. S_p is called the shape operator of M at \mathbf{p} derived from U.

LEMMA. For each point **p** of $M \subset \mathbb{R}^3$, the shape operator is a linear operator

$$S_p: T_p(M) \to T_p(M)$$

on the tangent plane of M at ${\bf p}.$

Proof. Use $U \cdot U = 1$, and differentiate both sides, we have

$$0 = \mathbf{v}[U \cdot U] = 2(\nabla_{\mathbf{v}}U) \cdot U = -2S_p(\mathbf{v}) \cdot U$$

Thus $S_p(\mathbf{v}) \in T_p(M)$.

Example. Given a sphere $x^2 + y^2 + z^2 = r^2$, we have

$$U = \frac{1}{r} \begin{pmatrix} x \\ y \\ z \end{pmatrix}, \qquad \nabla_{\mathbf{v}} U = \frac{1}{r} \begin{pmatrix} \mathbf{v}[x] \\ \mathbf{v}[y] \\ \mathbf{v}[z] \end{pmatrix} = \frac{1}{r} \begin{pmatrix} \mathbf{v}_1 \\ \mathbf{v}_2 \\ \mathbf{v}_3 \end{pmatrix} = \frac{1}{r} \mathbf{v}$$

Let $\mathbf{v} = \sum \mathbf{v}_i U_i = \sum \mathbf{v}_i \frac{\partial}{\partial x_i}$, then

$$S_p(\mathbf{v}) = -\nabla_{\mathbf{v}}U = -\frac{1}{r}\mathbf{v} \tag{51}$$

This is represented by $\begin{pmatrix} -\frac{1}{r} & 0 \\ 0 & -\frac{1}{r} \end{pmatrix}$.

Example. For a plane $S_p(\mathbf{v}) = -\nabla_{\mathbf{v}}U = 0$, because U is constant, it is represented by $\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$.

Example. Given a cylinder $x^2 + y^2 = 1$, we have $U = \frac{1}{r} \begin{pmatrix} x \\ y \\ 0 \end{pmatrix}$.

$$S_p(\mathbf{v}) = -\nabla_{\mathbf{v}}U = -\frac{1}{r} \begin{pmatrix} x \\ y \\ 0 \end{pmatrix}$$

A basis for $T_p(M)$ is $\left\{\frac{\partial}{\partial z}, \frac{\partial}{\partial \theta}\right\}$, where $\frac{\partial}{\partial z} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}, \frac{\partial}{\partial \theta} = \frac{1}{r} \begin{pmatrix} -y \\ x \\ 0 \end{pmatrix}$, then

$$S_p\left(\frac{\partial}{\partial z}\right) = 0, \quad S_p\left(\frac{\partial}{\partial \theta}\right) = -\frac{1}{r}\begin{pmatrix} -\frac{y}{r} \\ \frac{x}{r} \\ 0 \end{pmatrix} = -\frac{1}{r}\begin{pmatrix} \frac{\partial}{\partial \theta} \end{pmatrix}$$

This is the matrix $\begin{pmatrix} 0 & 0 \\ 0 & -\frac{1}{r} \end{pmatrix}$.

Theorem. Relative to any orthonormal basis of $T_p(M)$, S_p is represented by a 2×2 symmetric matrix.

Proof. If e_1, e_2 is a basis for $T_p(M)$, then let

$$\left(\begin{array}{c} S_p(e_1) \\ S_p(e_2) \end{array} \right) = \left(\begin{array}{cc} a & d \\ b & c \end{array} \right)^T \left(\begin{array}{c} e_1 \\ e_2 \end{array} \right)$$

Consider that the basis x_u, x_v is tangent to M, so $U \cdot x_u = 0$. Differentiate with respect to v,

$$\frac{\partial U}{\partial v} \cdot x_u + U \cdot \frac{\partial x_u}{\partial v} = 0$$

$$\left(\frac{d}{dv}\Big|_{v=v_0} U(x(u_0, v))\right) \cdot x_u + U \cdot x_{uv} = 0$$

$$\nabla_{x_v} U \cdot x_u + U \cdot x_{uv} = 0$$

$$-S_p(x_v) \cdot x_u + U \cdot x_{uv} = 0$$

Further we have

$$S_p(x_v) \cdot x_u = U \cdot x_{uv} = U \cdot x_{vu} = S_p(x_u) \cdot x_v \tag{52}$$

1. Dot product is the first foundamental bilinear form;

2. $S_p(x_v) \cdot x_u$ is the second foundamental bilinear form.

Now suppose

$$e_1 = fx_u + gx_v \quad e_2 = hx_u + jx_v$$

is any orthonormal basis. Then

$$\begin{array}{ll} b & = & S(e_1) \cdot e_2 \\ & = & S(fx_u + gx_v) \cdot (hx_u + jx_v) \\ & = & fhS(x_u) \cdot x_u + gjS(x_v) \cdot x_v + (fj + gh) S(x_u) \cdot x_v \\ & = & S(e_2) \cdot e_1 \\ & = & d \end{array}$$

Thus, S_p is represented by a 2×2 symmetric matrix.

THEOREM. The eigenvectors of a symmetric matrix A corresponding to two distinct eigenvalues λ_1, λ_2 are orthogonal.

Proof. We know $Av_1 = \lambda_1 v_1$, $Av_2 = \lambda_2 v_2$, and $A = A^T$, then

$$(\lambda_1 v_1) \cdot v_2 = (A v_1) \cdot v_2$$

$$= (A v_1)^T v_2$$

$$= v_1^T A^T v_2$$

$$= v_1^T (A v_2)$$

$$= \lambda_2 v_1^T v_2$$

$$= \lambda_2 v_1 \cdot v_2$$

$$(\lambda_1 - \lambda_2) v_1 \cdot v_2 = 0$$

Since $\lambda_1 - \lambda_2 \neq 0$, then $v_1 \cdot v_2 = 0$, which means two eigenvectors are orthogonal.

3.2. Normal Curvature

DEFINITION. Let M be a surface with unit normal vector field U, and let $\mathbf{p} \in M$, $u \in T_p(M)$, and ||u|| = 1, then the normal curvature is

$$k(u) = \alpha''(s) \cdot U \tag{53}$$

where $\alpha(s)$ is a curve parameterized by arclength with $\alpha(0) = \mathbf{p}, \alpha'(0) = u$.

Because $\alpha'(s)$ is tangent to M, $\alpha'(s) \cdot U_{\alpha(s)} = 0$. Differentiate with respect to s:

$$\alpha''(s) \cdot U_{\alpha(s)} + \alpha'(s) \cdot \frac{d}{ds} U_{\alpha(s)} = 0$$

Evaluate at s = 0, we have

$$\alpha''(0) \cdot U_{\alpha(0)} = -\alpha'(0) \cdot \frac{d}{ds} \Big|_{s=0} U_{\alpha(s)}$$

$$\alpha''(0) \cdot U_{\alpha(0)} = -\alpha'(0) \cdot \nabla_{\alpha'(0)} U$$

$$\alpha''(0) \cdot U_{\alpha(0)} = u \cdot S_{p}(U)$$
(54)

which is the normal curvature at **p** in the direction u. Suppose $u = \begin{pmatrix} x \\ y \end{pmatrix}$, and $x^2 + y^2 = 1$, and $S_p = \begin{pmatrix} a & b \\ b & c \end{pmatrix}$ relates to the same basis and it's symmetric. The normal curvature is

$$k(u) = u \cdot S_p(u)$$

$$= {x \choose y} \cdot {a \choose b \choose c} {x \choose y}$$

$$= ax^2 + 2bxy + cy^2$$

By lagrange, the max and the min occur when

$$\nabla k = \lambda_1 \nabla g \\
\left(\begin{array}{c} 2ax + 2by \\ 2bx + 2cy \end{array}\right) = \lambda_1 \begin{pmatrix} x \\ y \end{pmatrix} \\
\left(\begin{array}{c} a & b \\ b & c \end{array}\right) \begin{pmatrix} x \\ y \end{pmatrix} = \lambda \begin{pmatrix} x \\ y \end{pmatrix}$$

The max and the min occur at the 2 eigenvectors

$$k(x,y) = \begin{pmatrix} a & b \\ b & c \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} \cdot \begin{pmatrix} x \\ y \end{pmatrix} = \lambda \begin{pmatrix} x \\ y \end{pmatrix} \cdot \begin{pmatrix} x \\ y \end{pmatrix} = \lambda (x^2 + y^2) = \lambda$$

The max and the min normal curvature are the eigenvalues of S_p .

DEFINITION. Gauss curvature $K(p) = \det(S_p) = \lambda_1 \lambda_2$.

DEFINITION. Mean curvature $H(p) = \frac{1}{2}(\lambda_1 + \lambda_2) = \frac{1}{2} tr(S_p)$.

DEFINITION. Principal curvatures are λ_1, λ_2 ; principal directions are the orthogonal eigenvectors. They are orthogonal because S_p is symmetric.

Example. Let (x_p, y_p, z_p) be any point **p** of a surface function z = f(x, y), then the tangent plane is

$$z = f(x_p, y_p) + f_x(x_p, y_p)(x - x_p) + f_y(x_p, y_p)(y - y_p)$$
(55)

The unit normal vector is

$$U = \pm \frac{1}{\sqrt{1 + f_x^2 + f_y^2}} \begin{pmatrix} -f_x \\ -f_y \\ 1 \end{pmatrix} \Big|_{(x_p, y_p)}$$
 (56)

The unit normal vector to a plane specified by

$$F(x,y,z)=0$$

is given by

$$U=\pm\frac{\nabla F}{\sqrt{F_x^2+F_y^2+F_z^2}}$$

Specifically for F(x, y, z) = ax + by + cz + d, we have $U = \pm \nabla f = \pm \frac{1}{\sqrt{a^2 + b^2 + c^2}} \begin{pmatrix} a \\ b \\ c \end{pmatrix}$.

4. Geometry of Surfaces in \mathbb{R}^3

4.1. Structural Equations for Surfaces

DEFINITION. An adapted frame field on M is a triple of orthonormal Euclidean vector field (E_1, E_2, E_3) on surface M such that E_3 is normal to M, and so E_1, E_2 are tangent to M.

When we restrict the structural equations to surface M, for all $v \in T_p(M)$,

$$\theta_3(v) = v \cdot E_3 = 0$$

The first structural equation becomes

$$\begin{pmatrix} d\theta_1 \\ d\theta_2 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 & \omega_{12} & \omega_{13} \\ \omega_{21} & 0 & \omega_{23} \\ \omega_{31} & \omega_{32} & 0 \end{pmatrix} \begin{pmatrix} \theta_1 \\ \theta_2 \\ 0 \end{pmatrix}$$

$$(57)$$

Further simplification generates

$$d\theta_1 = \omega_{12}\theta_2 \tag{58}$$

$$d\theta_2 = \omega_{21}\theta_1 \tag{59}$$

$$\omega_{31} \wedge \theta_1 + \omega_{32} \wedge \theta_2 = 0 \tag{60}$$

The second structural equation becomes

$$d\omega_{12} = \omega_{13} \wedge \omega_{32} \tag{61}$$

$$d\omega_{13} = \omega_{12} \wedge \omega_{23} \tag{62}$$

$$d\omega_{23} = \omega_{21} \wedge \omega_{13} \tag{63}$$

The shape operator here is

$$\nabla_{v}E_{3} = \omega_{31}(v)E_{1} + \omega_{32}(v)E_{2} + \omega_{33}(v)E_{3}$$

$$S(v) = -\nabla_{v}E_{3}$$

$$= \omega_{13}(v)E_{1} + \omega_{23}(v)E_{2}$$

Relative to E_1, E_2 , then

$$S(E_1) = \omega_{13}(E_1)E_1 + \omega_{23}(E_1)E_2$$

$$S(E_2) = \omega_{13}(E_2)E_1 + \omega_{23}(E_2)E_2$$

Matrix representation of S is

$$S = \begin{pmatrix} \omega_{13}(E_1) & \omega_{13}(E_2) \\ \omega_{23}(E_1) & \omega_{23}(E_2) \end{pmatrix}$$

Gaussian curvature is

$$K = |S|$$

$$= \omega_{13}(E_1)\omega_{23}(E_2) - \omega_{13}(E_2)\omega_{23}(E_1)$$

$$= (\omega_{13} \wedge \omega_{23})(E_1, E_2)$$

$$= -d\omega_{12}(E_1, E_2)$$

Since $\omega_{13} \wedge \omega_{23}$ is a 2-form, and $\theta_1 \wedge \theta_2$ is a 2-form on M as well, then suppose $\omega_{13} \wedge \omega_{23} = f\theta_1 \wedge \theta_2$, and apply both sides to E_1, E_2 ,

$$\omega_{13} \wedge \omega_{23}(E_1, E_2) = f\theta_1 \wedge \theta_2(E_1, E_2)$$

$$K = f$$

Therefore,

$$\omega_{13} \wedge \omega_{23} = K\theta_1 \wedge \theta_2 = -d\omega_{12} \tag{64}$$

For the mean curvature, use

$$2H = \omega_{13}(E_1) + \omega_{23}(E_2)$$

$$= \omega_{13}(E_1)\theta_2(E_2) - \omega_{13}(E_2)\theta_2(E_1) + \theta_1(E_1)\omega_{23}(E_2) - \theta_1(E_2)\omega_{23}(E_1)$$

$$= (\omega_{13} \wedge \theta_2 + \theta_1 \wedge \omega_{23})(E_1, E_2)$$

Suppose $\omega_{13} \wedge \theta_2 + \theta_1 \wedge \omega_{23} = f\theta_1 \wedge \theta_2$, and apply both sides to E_1, E_2 , then f = 2H. And

$$\omega_{13} \wedge \theta_2 + \theta_1 \wedge \omega_{23} = 2H\theta_1 \wedge \theta_2 \tag{65}$$

Example. Let M be a sphere of radius ρ , then $x = \rho \cos \phi \cos \theta$, $y = \rho \cos \phi \sin \theta$, $z = \rho \sin \phi$, therefore

$$\frac{\partial}{\partial \phi} = \begin{pmatrix} -\rho \sin \phi \cos \theta \\ -\rho \sin \phi \sin \theta \\ \rho \cos \phi \end{pmatrix} \qquad \frac{\partial}{\partial \theta} = \begin{pmatrix} -\rho \cos \phi \sin \theta \\ \rho \cos \phi \cos \theta \\ 0 \end{pmatrix}$$

Choosing the adapted frame as $E_1 = \frac{1}{\rho} \frac{\partial}{\partial \phi}$, $E_2 = \frac{1}{\rho \cos \phi} \frac{\partial}{\partial \theta}$, the dual forms are $\theta_1 = \rho d\phi$, $\theta_2 = \rho \cos \phi d\theta$. Let $\omega_{12} = a d\phi + b d\theta$. Here ρ is constant, and θ , ϕ are functions. The first structural equation gives

$$d\theta_1 = \omega_{12}\theta_2$$

$$0 = (ad\phi + bd\theta)\rho\cos\phi d\theta$$

$$0 = a\rho\cos\phi d\phi \wedge d\theta$$

$$a = 0$$

use another first structural equation

$$d\theta_2 = -\omega_{12}\theta_1$$
$$-\rho\sin\phi d\phi \wedge d\theta = -(ad\phi + bd\theta)\rho d\phi$$
$$-\rho\sin\phi d\phi \wedge d\theta = b\rho d\phi \wedge d\theta$$
$$b = -\sin\phi$$

Thus $\omega_{12} = -\sin\phi d\theta$, to calculate the Gaussian curvature via (64),

$$K = -\frac{d\omega_{12}}{\theta_1 \wedge \theta_2} = -\frac{-\cos\phi d\phi \wedge d\theta}{(\rho d\phi) \wedge (\rho \cos\phi d\theta)} = \frac{1}{\rho^2}$$
(66)

4.2. Isometries

The intrinsic distance between p and q on surface M is

$$\rho(p,q) := \inf L(\alpha) = \inf \int_{a}^{b} \|\alpha'(t)\| dt \tag{67}$$

An isometry $f: M \to \overline{M}$ is a bijective differentiable map such that

$$(f_*v)\cdot (f_*w) = v\cdot w$$

for all $v, w \in T_p(M)$. TFAE:

- 1. $(f_*v)\cdot(f_*w)=v\cdot w;$
- 2. ||f(v)|| = ||v||;
- 3. f preserves orthonormal basis

A map $f: M \to \overline{M}$ is a local isometry if it preserves the dot product.

DEFINITION. A property of a surface that is invariant under isometries is intrinsic.

Theorem. Gaussian curvature K is intrinsic.

Proof. 1st structional equation on \bar{M} :

$$d\bar{\theta_1} = \overline{\omega_{12}} \wedge \bar{\theta_2}, \quad d\bar{\theta_2} = \overline{\omega_{21}} \wedge \bar{\theta_1}$$

Take F^* for both sides,

$$F^*d\bar{\theta_1} = F^*(\overline{\omega_{12}} \wedge \bar{\theta_2})$$

$$dF^*\bar{\theta_1} = F^*\overline{\omega_{12}} \wedge F^*\bar{\theta_2}$$

$$d\theta_1 = F^*\overline{\omega_{12}} \wedge \theta_2$$

Similarly we have

$$d\theta_2 = F^* \overline{\omega_{21}} \wedge \theta_1$$

By Cartan's lemma, $F^*\overline{\omega_{12}} = \omega_{12}$. Use Gauss's equation on \overline{M} ,

$$d\overline{\omega_{12}} = -\bar{K}\bar{\theta}_1 \wedge \bar{\theta}_2$$

$$F^*d\overline{\omega_{12}} = -F^*\bar{K}F^*\bar{\theta}_1 \wedge F^*\bar{\theta}_2$$

$$dF^*\overline{\omega_{12}} = -F^*\bar{K}\theta_1 \wedge \theta_2$$

$$d\omega_{12} = -\bar{K} \circ F\theta_1 \wedge \theta_2$$

Therefore

$$K = \bar{K} \circ F$$

At any point $p \in M$,

$$K(p) = \bar{K} \circ F(p)$$

 $K(p) = \bar{K}(F(p))$

The Gaussian curvature K at p is the same as \overline{K} at F(p).

Definition. A mapping of surfaces $F: M \to N$ is conformal provided there exists a real-valued function $\lambda > 0$ on M such that

$$||F_*(v_p)|| = \lambda(p)||v_p||$$
 (68)

for all tangent vectors to M. The function λ is called the scale factor of F. A conformal mapping preserves angles. When $\lambda = 1$, F is a local isometry.

5. RIEMANNIAN GEOMETRY

5.1. Geometric Surfaces

DEFINITION. An inner product on a vector space V is a function $<,>:V\times V\to\mathbb{R}$ that has these 3 properties: bilinearity; symmetry; postive definitness.

Example. Conformal change $\langle v, w \rangle = \frac{v \cdot w}{h^2}$.

DEFINITION. A geometric surface is a surface M with an inner product on $T_p(M)$ for each $p \in M$ s.t. if X, Y are differentiable vector fields on M, then $\langle X, Y \rangle$ is a differentiable function.

DEFINITION. A frame field on a geometric surface is a pair of orthonormal vector field E_1 , E_2 . Their dual 1-forms θ_1 , θ_2 are 1-forms on M s.t. $\theta_i(E_j) = \delta_{ij}$, or $\theta_i(v) = \langle v, E_i \rangle$.

Let $\overline{E_1}$, $\overline{E_2}$ be another frame field on M, and

$$(\overline{E_1} \ \overline{E_2}) = (E_1 \ E_2) \begin{pmatrix} a_{11} \ a_{12} \\ a_{21} \ a_{22} \end{pmatrix}$$

$$\overline{E} = EA$$

$$\overline{\theta}\overline{E} = \begin{pmatrix} \overline{\theta_1} \\ \overline{\theta_2} \end{pmatrix} (\overline{E_1} \ \overline{E_2})$$

$$= I$$

$$\begin{pmatrix} \overline{\theta_1} \\ \overline{\theta_2} \end{pmatrix} = \begin{pmatrix} b_{11} \ b_{12} \\ b_{21} \ b_{22} \end{pmatrix} \begin{pmatrix} \theta_1 \\ \theta_2 \end{pmatrix}$$

$$\overline{\theta} = B\theta$$

$$\overline{\theta}\overline{E} = B\theta EA$$

$$= BA$$

$$= I$$

$$B = A^{-1}$$

$$= A^T$$
(69)

The relation between $\bar{\omega}$ and ω :

$$d\bar{\theta} = d(B\theta)$$

$$= (dB)\theta + Bd\theta$$

$$= (dB)B^{-1}\bar{\theta} + B\omega\theta$$

$$= (dBB^{-1} + B\omega B^{-1})\bar{\theta}$$

$$\bar{\omega} = dBB^{-1} + B\omega B^{-1}$$

$$= (dA^{T})A + A^{T}\omega A$$

$$= \omega + A^{T}\omega A$$
(70)

The area form is

$$\bar{\theta_1} \wedge \bar{\theta_2} = (b_{11}\theta_1 + b_{12}\theta_2) \wedge (b_{21}\theta_1 + b_{22}\theta_2)
= (b_{11}b_{22} - b_{12}b_{21})\theta_1 \wedge \theta_2
= (\det B)\theta_1 \wedge \theta_2
= (\det A^T)\theta_1 \wedge \theta_2
= (\det A)\theta_1 \wedge \theta_2
\bar{\theta_1} \wedge \bar{\theta_2} = \pm \theta_1 \wedge \theta_2$$

1. If $\overline{E_1}$, $\overline{E_2}$ has the same orientation as E_1 , E_2 ,

$$A = \begin{pmatrix} \cos\varphi & -\sin\varphi \\ \sin\varphi & \cos\varphi \end{pmatrix}$$

$$\omega = (dA^{T})A$$

$$= \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} d\varphi$$

$$A^{T}\omega A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \omega_{12}$$

$$\bar{\omega} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \bar{\omega}_{12}$$

$$= \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} (\omega_{12} + d\varphi)$$

$$\bar{\omega}_{12} = \omega_{12} + d\varphi$$

$$d\bar{\omega}_{12} = d\omega_{12}$$

$$\bar{\theta}_{1} \wedge \bar{\theta}_{2} = \theta_{1} \wedge \theta_{2}$$

$$\bar{K} = K$$

$$(71)$$

2. Similarly if $\overline{E_1}$, $\overline{E_2}$ has the opposite orientation as E_1 , E_2 ,

$$A = \begin{pmatrix} \cos\varphi & \sin\varphi \\ -\sin\varphi & -\cos\varphi \end{pmatrix}$$

$$\overline{\omega_{12}} = -(\omega_{12} + d\varphi)$$

$$d\overline{\omega_{12}} = -d\omega_{12}$$

$$\bar{\theta}_1 \wedge \bar{\theta}_2 = -\theta_1 \wedge \theta_2$$

$$\bar{K} = K$$

$$(72)$$

K is independent of the choice of frame fields, it's defined as the Gaussian curvature of the geometric surface.

Example. Poincare half-plane

$$\mathbb{H}^2 \!=\! \{(x,y)\!\in\! \mathbb{R}^2 | y\!>\! 0\} \quad \text{with} \quad <\! v,w>_{(x,y)} \!=\! \frac{v\cdot w}{y^2}$$

where $v, w \in T_{(x,y)}(\mathbb{H}^2) \simeq \mathbb{R}^2$.

$$\langle \frac{\partial}{\partial x}, \frac{\partial}{\partial x} \rangle_{(x,y)} = \frac{\begin{pmatrix} 1 \\ 0 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 0 \end{pmatrix}}{y^2}$$
$$= \frac{1}{y^2}$$
$$\langle \frac{\partial}{\partial y}, \frac{\partial}{\partial y} \rangle_{(x,y)} = \frac{\begin{pmatrix} 0 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 0 \\ 1 \end{pmatrix}}{y^2}$$
$$= \frac{1}{y^2}$$

 $E_1 = y \frac{\partial}{\partial x}, E_2 = y \frac{\partial}{\partial y}$ is a frame field. The dual 1-forms are $\theta_1 = \frac{1}{y} dx, \theta_2 = \frac{1}{y} dy$. The first structional equations are

$$d\theta_1 = -\frac{1}{y^2} dy \wedge dx$$

$$= \frac{1}{y} dx \wedge \frac{1}{y} dy$$

$$= \omega_{12} \wedge \theta_2$$

$$d\theta_2 = -\frac{1}{y^2} dy \wedge dy$$

$$= 0$$

$$= -\omega_{12} \wedge \theta_1$$

$$\omega_{12} = \frac{1}{y} dx$$

$$d\omega_{12} = -\frac{1}{y^2} dy \wedge dx$$

$$= \frac{1}{y} dx \wedge \frac{1}{y} dy$$

$$= \theta_1 \wedge \theta_2$$

So the Gaussian curvature of \mathbb{H}^2 is K=-1. The area of Poincare half-plane is then

Area(
$$\mathbb{H}^2$$
) = $\iint_{\mathbb{H}^2} \theta_1 \wedge \theta_2$
= $\iint_{\mathbb{H}^2} \frac{1}{y^2} dx \wedge dy$
= $\iint_{\mathbb{H}^2} \frac{1}{y^2} dx dy$
= $\int_{-\infty}^{\infty} \int_0^{\infty} \frac{1}{y^2} dy dx$
= $\int_{-\infty}^{\infty} -\frac{1}{y} \Big|_0^{\infty} dx$

It should be noted that

$$\iint_{A} f dx \wedge dy = \iint_{A} f dx dy = \iint_{A} f dy dx = -\iint_{A} f dy \wedge dx \tag{73}$$

5.2. Covariant Derivative

DEFINITION. The covariant derivative in \mathbb{R}^3 is a function:

$$\nabla: \mathfrak{X}(\mathbb{R}^3) \times \mathfrak{X}(\mathbb{R}^3) \to \mathfrak{X}(\mathbb{R}^3)$$

$$\nabla_{V}X = \begin{pmatrix} V[X_1] \\ V[X_2] \\ V[X_3] \end{pmatrix}$$

satisfying

- 1. \mathbb{R} bilinear in both V and X;
- 2. f linear in V: $\nabla_{fV} = f \nabla_V X$;
- 3. Leibniz rule in X: $\nabla_V(fX) = V[f]X + f\nabla_VX$.

Definition. On an open set U of a geometric surface, a function

$$\nabla : \mathfrak{X}(U) \times \mathfrak{X}(U) \rightarrow \mathfrak{X}(U)$$

is a covariant derivative on U if it satisfies these 3 properties.

Theorem. The connection form ω_{12} on (U, E_1, E_2) defines a covariant derivative on U by

$$\nabla_{V}E_{1} = \omega_{12}(V)E_{2}$$

$$\nabla_{V}E_{2} = -\omega_{12}(V)E_{1}$$

$$\nabla_{V}(f_{1}E_{1}) = V[f_{1}]E_{1} + f_{1}\omega_{12}(V)E_{2}$$

$$\nabla_{V}(f_{2}E_{2}) = V[f_{2}]E_{2} - f_{2}\omega_{12}(V)E_{1}$$

An arbitrary $X = f_1E_1 + f_2E_2 \in \mathfrak{X}(U)$ is

$$\nabla_V(X) = (V[f_1] - f_2\omega_{12}(V))E_1 + (V[f_2] + f_1\omega_{12}(V))E_2$$

This $\nabla_V X$ is clearly \mathbb{R} - bilinear, f - linear in V, we can check it also satisfies the Leibniz rule.

DEFINITION. Let $\alpha: [a, b] \to M$ be a curve in a geometric surface and let X be a vector field in M along the curve α , and $\mathfrak{X}(\alpha^*T_p(M))$ is a differentiable vector field in M along α . A covariant derivative along α is a function

$$\frac{D}{dt}:\mathfrak{X}(\alpha^*T_p(M))\to\mathfrak{X}(\alpha^*T_p(M))$$

such that

- 1. \mathbb{R} linear in X;
- 2. Leibniz rule in $X: \frac{D}{dt}(fX) = \frac{df}{dt} \cdot X + f \frac{DX}{dt}$;
- 3. If X is the restriction of \tilde{X} on M, then $\frac{DX}{dt} = \nabla_{\alpha'(t)}\tilde{X}$;
- 4. $\frac{d}{dt} < V, W > = <\frac{DV}{dt}, W > + < V, \frac{DW}{dt} > 1$

Theorem. Given a covariant derivative ∇ on M and a curve $\alpha(t)$ in M, there exists a unique covariant derivative $\frac{D}{dt}$ along α .

Proof. On a framed open set (U, E_1, E_2) ,

$$V = \sum_{i} V_{i}E_{i}$$

$$\frac{DV}{dt} = \sum_{i} V'_{i}(t)E_{i} + \sum_{i} V_{i}\frac{DE_{i}}{dt}$$

$$= \sum_{i} V'_{i}(t)E_{i} + \sum_{i} V_{i}\nabla_{\alpha'(t)}E_{i}$$

Use this as the definition of $\frac{DV}{dt}$. Verify the 4 properties.

Definition. If $\alpha: [a,b] \to M$ is a curve on a geometric surface M, then α' is a vector field along α .

$$\alpha'(t) \stackrel{\text{def}}{=\!\!\!=\!\!\!=} \alpha_* \left(\frac{d}{dt}\right)$$

The acceleration is defined as

$$\alpha''(t) \stackrel{\mathrm{def}}{=\!\!\!=\!\!\!=} \frac{D}{dt} \alpha'(t)$$

A curve α in a geometric surface is a geodesic if $\alpha'' = 0$.

5.3. Gauss-Bonnet Theorem

Let $\beta: [a, b] \to M$ be a unit-speed curve in an oriented geometric surface, and $T = \beta' = \beta_* \left(\frac{d}{ds}\right)$. Because ||T|| = 1, $T' = \frac{DT}{ds}$ will be orthogonal to T,

$$\begin{split} & < T(s), T(s)> \ = \ \|T\|^2 \! = \! 1 \\ & \frac{d}{ds} \! < \! T(s), T(s)> \ = \ < \! \frac{DT}{ds}, T> \! + \! < \! T, \frac{DT}{ds}> \! = \! 0 \\ & < \! \frac{DT}{ds}, T> \ = \ 0 \end{split}$$

Since M is oriented, there is a positive oritented orthogonal frame T, N s.t. T' = kN for some $k \in \mathbb{R}$. k is the geodesic curvature.

Theorem. A unit-speed curve on an oriented geometric surface is a geodesic iff k = 0.

Suppose T makes an angle φ relative to E_1 in an oriented orthogonal frame $E_1, E_2,$

$$\begin{pmatrix} T \\ N \end{pmatrix} = \begin{pmatrix} \cos\varphi & \sin\varphi \\ -\sin\varphi & \cos\varphi \end{pmatrix} \begin{pmatrix} E_1 \\ E_2 \end{pmatrix}$$

Then take the derivative

$$T' = \frac{DT}{ds}$$

$$= -\sin\varphi \frac{d\varphi}{ds} E_1 + \cos\varphi \frac{DE_2}{ds} + \cos\varphi \frac{d\varphi}{ds} E_2 + \sin\varphi \frac{DE_2}{ds}$$

$$= \frac{d\varphi}{ds} (-\sin\varphi E_1 + \cos\varphi E_2) + \cos\varphi \nabla_{\beta'(s)} E_1 + \sin\varphi \nabla_{\beta'(s)} E_2$$

$$= \frac{d\varphi}{ds} N + (\cos\varphi)\omega_{12}(\beta') E_2 + (\sin\varphi)\omega_{21}(\beta') E_1$$

$$= \left(\frac{d\varphi}{ds} + \omega_{12}(\beta')\right) N$$

Therefore the geodesic curvature is

$$k = \frac{d\varphi}{ds} + \omega_{12}(\beta') \tag{74}$$

Definition. The total geodesic curvature on β is defined as

$$\int_{a}^{b} k(s)ds = \int_{a}^{b} \frac{d\varphi}{ds} ds + \int_{a}^{b} \omega_{12}(\beta'(s))ds$$

$$= \varphi(b) - \varphi(a) + \int_{\beta} \omega_{12} \tag{75}$$

Theorem. (Gauss-Bonnet) The total Gaussian curvature M of a compact orientable geometric surface M is 2π times its Euler characteristic:

$$\iint_{D} KdM = 2\pi \mathcal{X}(M) \tag{76}$$

Proof. Let Δ_i = change of angle along ∂_i , ι_i is exterior angle and ε_i is exterior angle at the end of the *i*th edge. Total geodesic curvature on the boundary of a rectangle ∂D is

$$\sum_{i=1}^{4} \int_{\partial_i} k = \sum_{i=1}^{4} \Delta_i + \sum_{i=1}^{4} \int_{\partial_i} \omega_{12}$$

$$= 2\pi - \sum_{i=1}^{4} \varepsilon_i + \int_{\partial x} \omega_{12}$$

$$= 2\pi - \sum_{i=1}^{4} (\pi - \iota_i) + \iint_D d\omega_{12}$$

$$= -2\pi + \sum_{i=1}^{4} \iota_i - \iint_D K\theta_1 \wedge \theta_2$$

$$= -2\pi + \sum_{i=1}^{4} \iota_i - \iint_D KdM$$

Suppose M can be cut up into rectangle patches. Let v, e, f be the number of vertices, edges, and faces in a rectangle partition of M. Sum up total geodesic curvature,

$$\sum_{x} \sum_{i=1}^{4} \int_{\partial_{i}} k = \sum_{f} -2\pi + \sum_{v} \iota_{i} - \iint_{D} K dM$$

$$0 = -2\pi f + 2\pi v - \iint_{D} K dM$$

$$\iint_{D} K dM = -4\pi f + 2\pi f + 2\pi v$$

$$= -2\pi e + 2\pi f + 2\pi v$$

$$= 2\pi (v - e + f)$$

$$= 2\pi \mathcal{X}(M)$$

The theorem shows that total Gaussian curvature is a topological invariant.

THEOREM. Let S be a surface, D is an oriented polygonal region in a geometric surface, k is the geodesic curvature, K is the Gaussian curvature at a point in D. If A_i is each angle of the irregular point. The Gauss-Bonnet Theorem is

$$\sum_{i=1}^{n} (\pi - \iota_i) + \int_{\partial D} k ds + \iint_{D} K dM = 2\pi \mathcal{X}(M)$$
 (77)

Proof. If we use a rectangle partition, and now the boundary curves survive,

$$\sum_{x} \sum_{i=1}^{4} \int_{\partial_{i}} k = \sum_{f} -2\pi + \sum_{v} \iota_{i} - \iint_{D} K dM$$

$$\int_{\partial D} k ds = -2\pi f + 2\pi (v - n) + \sum_{i=1}^{n} \iota_{i} - \iint_{D} K dM$$

$$\int_{\partial D} k ds + \iint_{D} K dM = -4\pi f + 2\pi f + 2\pi v - 2n\pi + \sum_{i=1}^{n} \iota_{i}$$

Different from previously 4f = 2e, here with the boundaries we have 4f = 2e - n, thus

$$\begin{split} \int_{\partial D} k ds + \iint_D K dM &= \pi (n-2e) + 2\pi f + 2\pi v - 2n\pi + \sum_{i=1}^n \iota_i \\ \int_{\partial D} k ds + \iint_D K dM &= 2\pi (v-e+f) - n\pi + \sum_{i=1}^n \iota_i \\ \sum_{i=1}^n (\pi - \iota_i) + \int_{\partial D} k ds + \iint_D K dM &= 2\pi \mathcal{X}(M) \end{split}$$

This is based on that the polygon can be partitioned by rectangles.

Example. Geodesic triangle in Euclidean surface, where $k = 0, K = 0, \mathcal{X} = 1$, then

$$\sum_{i=1}^{3} (\pi - \iota_i) + \int_{\partial D} 0 ds + \iint_{D} 0 dM = 2\pi$$

$$\sum_{i=1}^{3} \iota_i = \pi$$

More generally for a geodesic polygon in geodesic surface,

$$\sum_{i=1}^{n} (\pi - \iota_i) + \int_{\partial D} 0 ds + \iint_D K dM = 2\pi$$

$$\sum_{i=1}^{n} \iota_i = (n-2)\pi + \iint_D K dM$$

Specifically for Euclidean space where $K=0, \sum_{i=1}^n \iota_i=(n-2)\pi$. If it's a geodesic triangle on a sphere with radius r, then we have $K=\frac{1}{r^2}, \mathcal{X}=1$, and

$$\sum_{i=1}^{3} (\pi - \iota_i) + \int_{\partial D} 0 ds + \iint_{D} \frac{1}{r^2} dM = 2\pi$$

$$3\pi - \sum_{i=1}^{3} \iota_i + \frac{\Delta}{r^2} = 2\pi$$

$$\sum_{i=1}^{3} \iota_i = \pi - \frac{\Delta}{r^2}$$

COROLLARY. Let M be a compact orientable surface. Then TFAE:

- 1. M has a continuous nowhere-vanish vector field V;
- 2. $\mathcal{X}(M) = 1$;
- 3. M is a torus.

Proof. Assume 1), let $E_1 = \frac{V}{\|V\|}$, $E_2 = J(E_1)$. So the entire surface is a framed open set. There is a unique connection form ω_{12} on M,

$$d\omega_{12} = -K\theta_1 \wedge \theta_2$$
$$= -KdM$$

According to Guass-Bonnet Theorem, then

$$0 = \int_{\partial M} \omega_{12} = \int_{M} d\omega_{12} = -\iint_{M} K dM = -2\pi \mathcal{X}(M)$$

So $\mathcal{X}(M) = 0$. Thus $1 \Rightarrow 2$, $2 \Rightarrow 3$ by Classification Theorem, $3 \Rightarrow 1$ by construction.

6. Manifolds

6.1. Topological Manifolds

DEFINITION. A topological space M is locally Euclidean of dimension n if every point p in M has a neighborhood U such that there is a homeomorphism ϕ from U onto an open subset of \mathbb{R}^n . The pair $(U, \phi: U \to \mathbb{R}^n)$ is a chart, U is a coordinate neighborhood or a coordinate open set, and ϕ is a coordinate map or a coordinate system on U. A chart (U, ϕ) is centered at $p \in U$ if $\phi(p) = 0$.

Definition. A topological manifold is a Hausdorff, second countable, locally Euclidean space. It's said to be of dimension n if it's locally Euclidean of dimension n.

DEFINITION. Two charts $(U, \phi: U \to \mathbb{R}^n)$, $(V, \psi: V \to \mathbb{R}^n)$ of a topological manifold are C^{∞} – compatible if the two maps

$$\phi \circ \psi^{-1}$$
: $\psi(U \cap V) \to \phi(U \cap V)$, $\psi \circ \phi^{-1}$: $\phi(U \cap V) \to \psi(U \cap V)$

are C^{∞} . These two maps are called the transition functions between the charts.

DEFINITION. A C^{∞} atlas or simply an atlas on a locally Euclidean space M is a collection $\mathfrak{U} = \{(U_{\alpha}, \phi_{\alpha})\}$ of pairwise C^{∞} – compatible charts that cover M, i.e., such that $M = \bigcup_{\alpha} U_{\alpha}$.

An atlas \mathfrak{M} on a locally Euclidean space is said to be maximal if it's not contained in a larger atlas; if \mathfrak{U} is any other atlas containing \mathfrak{M} , then $\mathfrak{U} = \mathfrak{M}$.

DEFINITION. A smooth or C^{∞} manifold is a topological manifold M together with a maximal atlas. The maximal atlas is also called a differentiable structure on M. A manifold is said to have dimension n if all of its connected components have dimension n. A 1-dimensional manifold is called a curve, a 2-dimensional manifold a surface, and an n-dimensional manifold an n-manifold.

Definition. A Lie group is a C^{∞} manifold G having a group structure s.t. the multiplication map

$$\mu: G \times G \rightarrow G$$

and the inverse map

$$\iota: G \to G, \quad \iota(x) = x^{-1}$$

are both C^{∞} .

6.2. Categories and Functors

A category consists of a collection of elements, called objects, and for any two objects A and B, a set Mor(A, B) of elements, called morphisms from A to B, s.t. given any morphism $f \in Mor(A, B)$ and any morphism $g \in Mor(B, C)$, the composite $g \circ f \in Mor(A, C)$ is defined. It satisfies:

i. the identity axiom: for each object A, there is an identity morphism $1_A \in \text{Mor}(A, A)$ s.t. for any $f \in \text{Mor}(A, B)$ and $g \in \text{Mor}(B, A)$,

$$f \circ 1_A = f$$
, $1_A \circ g = g$

ii. the associative axiom: for $f \in \text{Mor}(A, B)$, $g \in \text{Mor}(B, C)$, and $h \in \text{Mor}(C, D)$,

$$h \circ (g \circ f) = (h \circ g) \circ f$$

If $f \in \text{Mor}(A, B)$, we often write $f: A \to B$.

DEFINITION. Two objects A and B in a category are said to be isomorphic if there are morphisms $f: A \to B$ and $g: B \to A$ s.t.

$$g \circ f = 1_A$$
, $f \circ g = 1_B$

In this case both f and g are called isomorphisms.

DEFINITION. A (covariant) functor \mathcal{F} from one category \mathcal{C} to another category \mathcal{D} is a map that associates to each object A in \mathcal{C} an object $\mathcal{F}(A)$ in \mathcal{D} and to each morphism $f: A \to B$ there is a morphism $\mathcal{F}(f): \mathcal{F}(A) \to \mathcal{F}(B)$ s.t.

i.
$$\mathcal{F}(1_A) = 1_{\mathcal{F}(A)}$$

ii.
$$\mathcal{F}(f \circ g) = \mathcal{F}(f) \circ \mathcal{F}(g)$$

DEFINITION. A contravariant functor \mathcal{F} from one category \mathcal{C} to another category \mathcal{D} is a map that associates to each object A in \mathcal{C} an object $\mathcal{F}(A)$ in \mathcal{D} and to each morphism $f: A \to B$ there is a morphism $\mathcal{F}(f): \mathcal{F}(A) \to \mathcal{F}(B)$ s.t.

i.
$$\mathcal{F}(1_A) = 1_{\mathcal{F}(A)}$$

ii.
$$\mathcal{F}(f \circ g) = \mathcal{F}(g) \circ \mathcal{F}(f)$$

Example. The pushforward map $F_*: T_p(N) \to T_{F(p)}(M)$ is a functor because

$$(G \circ F)_* = G_* \circ F_*$$

The pullback map otherwises satisfies

$$(G \circ F)^* = F^* \circ G^*$$

6.3. Vector Bundle

A bundle map construction is a functor from the category of smooth manifolds to the category of vector bundles.

DEFINITION. Let M be a smooth manifold, the tangent bundle of M is the union of all the tangent spaces of M:

$$TM = \bigcup_{p \in M} T_p M = \coprod_{p \in M} T_p M$$

DEFINITION. Product bundle is a special case of $\pi: E \mapsto M$:

$$\pi: M \times V \mapsto M$$

7. Appendix

7.1. Generalization Map

The generalization from single-variable calculus to several-variable calculus is as follows [3].

 $\text{indefinite integral} \longrightarrow \begin{cases} \text{solution to differential equations} \\ \text{integral of } a \text{ connection, vector field, or bundle} \end{cases}$ unsigned definite integral \longrightarrow Lebesgue integral \longrightarrow integration of a measure space signed definite integral \longrightarrow integration of forms

7.2. Notation Table

Table 2. Terminology Dictionary

BIBLIOGRAPHY

- [1] 陈省身. 高斯—博内定理及麦克斯韦方程. 科学, 3:6, 2001.
- [2] Barrett O'neill. Elementary differential geometry. Elsevier, 2006.
- [3] Terence Tao. Differential forms and integration. Tech Rep Dep Math UCLA, 2007.
- [4] Loring Tu. An Introduction to Manifolds. Universitext. Springer New York, 2010.
- [5] Hermann Weyl. Gravitation and electricity. Sitzungsber. Preuss. Akad. Wiss. Berlin (Math. Phys.), 465, 1918.