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2 DIFFERENTIAL GEOMETRY

1. CALCULUS ON EUCLIDEAN SPACE

1.1. Directional Direvatives

The directional derivative of a function f(p), with respect to a tangent vector v is a real number

vif] = % f(p+tv)

The differential d f of f is the 1-form such that df(v,) = vp[f] for all tangent vector vy, [2].

LEMMA. Let o be a curve in R? and let f be a differentiable function on R3. Then

/ _d(f(a))
a'(1)[) = 2L ) )
Proof. Since o' = (ddil, ddaf 5 %), then by definiton of directional derivative,
o011 =Y L0 2L (o) = L 0
Two useful identities are
_ of
dz;(v) = v; (4)

Differential forms on R? have the following 1-1 correspondences: O-forms can be identified with
scalar functions; 1-forms can be identified with vector fields; 2-forms can also be identified with
vector fields via right-hand rule; 3-forms can be identified with scalar functions.

S fidaiiSST U fidwsdas + fodesday + frdaidas

Therefore we have

f = f(xla"'axi;"')

df <2 grad f (5)

~—

Vo= Y fU

Ttan 1 form <25V, thendg <2 curl V

_ Ofs  0Ofa of1  Ofs Ofs  Of1
= (a_@_a_mg>Ul+<%3_3_$1>U2+<3_xl_%2>U3 (6)

If a2 form U&V,then dn = (divV)dzdydz
_ ofi
= ( i 6aci>dxdydz (7)
The correspondences can be summarized as follows.
0-form f=Vf gradient
l-form wrH—dw V=V XV curl
2-form V—V.-V divergence
0-form A VX (V=0
1-form d(dw) =0 V-(VxV)=0

Table 1. Correspondences between forms and functions, vector fields
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In summary, on an open subset U of R3, there are identifications

QU N QYU N 02U N 03U

~I ~I ~I ~I
C>( >E;;§> X(U) - X(0) - c>U

1.2. Vector Fields

A vector field W on an open subset U of R" is a function that assigns to each point p in U a
tangent vector W, in T,,(R™) [4].
W Z axl

where w® are real-valued functions on U. Define a new function Wf on U by

(Wh)(p)=W,f=>_ w' 8331

_ ; Of
Wfwaw (10)

(8)

or simply

1.3. Covariant Direvatives

The covariant derivative of a vector field W = Y w;U; with respect to a tangent vector v is the
tangent vector

d
% t:OW(p + tV)

= > v[wUi(p) (11)
viwi]

|

[w2
[w3]

VW =

I
< <

Example. suppose W =z2U; + y2Us, and v=(—1,0,2)atp=(2,1,0), then
(

p+tv = (2—1t,1,2t)
W(p+tV) = (2—t)2U1+2tU3
V.W = W(p+tv)(0)

= —4U; +2U;
The covariant derivative of a vector field W with respect to a vector field V' is the vector field
VW = Y Vw]U; (12)
Example. suppose W =22U; + y2Us, and V = (y — 2)U; + 2yUs, then
V2% = (y—a)Ui[2?]

= 2z(y - )
Viyz] = xyUslyz]

VW = 2x(y—2)Ur+2y?Us

THEOREM. Let v and w be tangent vectors to R? at p, and let Y and Z be vector fields on R3.
Then for numbers a,b and functions f,
VavtbwY = aV,Y +bV,Y
V(@Y +bZ) = aV,Y +bV,Z
Vo(fY) = o[fIY(p)+ f(P)V.Y
v[Y - 2] = V)Y -Z(p)+Y(p)- V2
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1.4. Differential Forms

DEFINITION. The alternating multilinear functions with k arguments on a vector space are called

multicovectors of degree k, or k — covectors for short.

DEFINITION. A I-form ¢ on R? is a real-valued function on the set of all tangent vectors to R3

such that ¢ s linear at each point, that is,
plav +bw) =ad(v) + bp(w)

for any numbers a,b and tangent vectors v,w at the same point of R3.

Let fand g be real-valued functions on R2. It’s proved that
df Ndg = Y ldzdy

Therefore we have

by Oy
or Oy

dyNdzx = R drdy

o oy
01
10

dydr = —dxdy

dydr = ‘ dxdy

THEOREM. Let fand g be functions (0-forms), ¢ and ¢ are 1-forms. Then

d(fg) = (df)g+ f(dg)
d(f¢) = df o+ fdo
d(¢AY) = dpn—pNdY
More generally, if € is a p-form and 1 is a g-form, then

EAn = (=1)PIAE
d(EAm) = (d§) An+ (=1)PE A (dn)

(13)

(15)
(16)

DEFINITION. If ¢ =" fidx; is a 1-form on R3, the exterior derivative of ¢ is the 2-form d¢ =

_(9f2 _Of Ofs  0Ofo ofi  0fs
d¢_<a_xl_%>d dx +<a—2—%>d adz +<%3—8—$1

Let g be a real-valued function on IR3, then we have
— 9
dg = Z 81'1de

= Z fidx;

o 9gi
fi = De,

then we have

f2  Oft

0 0Og 0 0Og
8:131 8x2 (9:]32 83:1

d(dg) = 0

)dl’ldxg = 0

>d$3d$1

of

3.1‘3

Ofs
or 1

)d:rgd:nl
(17)
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The property holds in more generality: in fact, d(da)=0 for any k-form o; more succinctly,d? =
Ak —formw on U is closed if dw=0; it’s exact if there is a (k — 1) — form 7 such that w=dronU.
Since d(dt) =0, every exact form is closed.

Example. (MAXWELL’S EQUATION) For connection form w, we have its exterior derivative [1]
Q=dw,dQ)=d(dw)=
When S is 4-dimensional Lorenz manifold, then we have
ds?=—dzd+da? +dz3+da3

Let © :%Z Fidz; ANdx;, where F;;=—F}; is a 2-form [5], and the electromagnetic four-potential
A is a 1-form including an electric scalar potential and a magnetic vector potential.

4 & (%,A)
FY oaa
04 A
Fi = 5 " o

0 B, E, Fs
-F, 0 —Bs B
~Ey By 0 -B;
—Fy -B, B 0

For ds?, there is the operator « such that d* =xdx. If j = (ji, jo, j3), then
J = —pd$1d$2d$3 + dmo(jldl‘gdng + del‘gdl‘l + j3d$1dl‘2)

Since dFij Adx; Ndx;j is

0 dEiNdxogNdxy dEsNdxoNdxs dEsNdxoNdxs
—dEi Ndxy ANdxg 0 —dBsNdxiANdxry dBsAdxiAdxs
—dFEsNdxzoNdrg dBsAdxs Adxy 0 —dBi ANdxo Ndxs
—dEsNdxsNdrg —dBaANdxsANdxry dBiAdzrsA\dzs 0
Moreover
dB ndzonder = 2w+ 2P0 gy + 2100 + 2810 Y A dao A diry
6:50 or 1 Or T2 Ox €3
= %dajg/\dzo/\dzl+g—daj3/\d:£0/\d:£1
= %diﬁo/\dfﬂl/\d1'2+a—d$0/\d1'1/\d1'3
oA Oxs
Similarly we have
OF>
dEs NdrgNdxy = —8—d$0/\d$1/\d.Z‘Q-i-a—dmo/\dZEQ/\dl‘g
451 T3
dEsNdxogAdzs = gE3dx0/\d:E1/\d:rgfg—dxo/\dxg/\d:rg,
451
—dByAday Adws — ng’dond:clAde—g—dxmdmd:cg
To T3
dBoANdxiNdxs = %dl‘o/\dl‘l/\dl‘g—g—dl‘l/\dl‘g/\dl‘g
Zo zo

—dBi ANdasANdzs = g]jldxo Adzo Adxs— ‘Zidxl Adzo Adxs
0
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Therefore
1
= %Z dFij/\dl‘i/\dl‘j

. <3E1 OF> B 0B3 0F1 OF3 0B>

)dl‘o A dxy N dxe + (8353 — oy + D0 )dl‘o A dxy N dxs +

6:52 or 1 6:50

OFE> 0OFEs3 0B 0Bs 0By 0B
< s - s - 920 )d:L'o/\d.’L'Q/\ dxs+ < Oz — o2y — Oy )d.’L’l ANdxaNdxs
Because d2 =0, thus we have
o) 51 B OF, B 0Bs3 .
((9%2 arl a’L’o )d:rodl'ldxg =0 (18)
OFy OFs3 0B .
(8353 - Oy + o0 )dl‘odiﬂldl‘g =0 (19)
OF> B OF3 B 0B1 .
((9%3 (9%2 a’L’o )d:rodl'gdxg, =0 (20)
and
_333_832_631 - 0=V.B=0 (21)

83:3 8952 8x1
Given zog=t, —(18)+(19)—(20) is

drodrodxs drodridrs drodzidas

0B ) ) )
| B0z R
E B, B
%B+ VXxE = 0 (22)
Using d*Q2 =4xJ, we have
V-E = 4mp (23)
VX B-— % = 47y (24)

where t = xo, E = (F1, Ea, E3) is the electric field, B = (B1, B2, Bs) is the magnetic field,
p is the charge density, j is the current density. Moreover, pdz; A dze A dzs is the charge,
jidxadxs + jedxsdxy + jsdxidxs is the electric flux j-dS. dzg A (j - dS) is the electric current
through surface dS. Using d? =0, we have d.J = 0, which is the law of charge conservation, also
known as continuity equation,

dJ = —dpdxidxodas+ d(dxo(jrdredzs+ jedxsdxi + jsdxidas))
= —dpdl‘ldl‘QdiEg + d(j1d$0d$2d.r3 + jgdl‘odiﬂgdl‘l + jgdmodl‘ldéﬁg)
= —ﬂdl‘odiﬂldl‘gdmz; + djrdxodxodxrs — djodxodxidas + djsdrodridas

(9%0
= 78pd$0d1'1d$2d1'3+%dlﬂ1d$0d1’2d$37%ditgdl'od%ldl'g+%d.’£3d$0d1’1d$2
ot or, O Ox3

_ (9% 95 0Oj  Ojs
= <8t -+ By + O + 8163 dl‘od$1d$2dl‘3

_ (% +V- j)dzodxldxgdm

Thus we have
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1.5. Tangent Map
Let F'=(fi, f2,..., fm) be a mapping from R" to R™. If v, is a tangent vector to R™ at p, then

F(v) = (V[ i) -s vIfml) at F(p) (25)
If 5=F(a(t)) is the image of a curve a in R", then 8’ = F,(a/).

1.6. Frame Fields

THEOREM. If B:1—R? is a unit-speed curve with curvature k>0 and torsion T, then

T’ 0 « O T
N | =1 -k 0 7 N (26)
B’ 0 —70 B

DEFINITION. If E; is a frame on R? v € T,(R?), then v= "> v;E;, define 1-form 0;: T,(R?) — R,
0;(v) =v;. 01,02,03 are the dual 1-forms of Ey, Es, Fs.

DEFINITION. Attitude matriz A connects two frame fields as
E=AU (27)
where A= [a;;] € SO,,.

DEFINITION. Connection form w is defined in
V.E=wE (28)
Because V,E; = Z?leijEj, we have

Wij; = (VUEI)EJ

k=

—

NE

v[aik]ajk
k=1
3
= Z da;k(v)ak
k=1
In matrix form, it’s written as
w=(dA)AT (29)
w is a skew symmetric matrix. Because
AAT = T
d(AAT) = 0
(dA)AT + A(dAT) = 0
(dA)AT + ((dA)AT)T = 0
(dA)AT = —((dA)ATT
w = —w? (30)

Example. Find the connection form of the cylindrical frame field.

Ey cos(f) sin(6) 0 U
E; |=| —sin(d) cos(d) 0 Us
Es 0 0 1 Us
So we have
cos(f) —sin(d) 0 —sin(@)dd cos(f)dd 0
AT =| sin(f) cos(d) 0 dA=| —cos(0)df —sin(f)dd 0
0 0 1 0 0 0
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The connection form is

0 db o
w=(dA)AT=[ —do 0 0 (31)
0 00

DEFINITION. Denoting the vector space of all linear maps f: V — W, where V,W are real vector
spaces, the dual space of Vis V¥V =Hom(V,R).

DEFINITION. If F; is a frame field, then the dual 1-forms 0; of the frame field are the 1-forms s.t.
91(1}) =v- Ez':Uz' (32)
for each tangent vector v to R? at p. It satisfies

0:(E;)=E;- E;j=6; (33)

LEMMA. Any 1-form ¢ on R3 in a frame field E; has a unique expression
=Y ¢(E:)bi (34)
Proof. Apply to any tagent vector v,
(D~ ¢(EN6:)(v) = > d(E)bi(v)

= > vig(Ey)
= 515(2 viE;)
= ¢(v)

Generally >~ ¢(E;)0; = ¢. O
Example. In particular, if we choose E;=U;,0; =dx;, then by (34),

6=>" o(U)da; (35)
for E;=3" a;;Uj, the dual formulation is just 6; =3 a;;dx;. This is because,

0:(U;) = Uj- E;
= Uj- (D ainl)
= Zaikékj

From (35) we have

9,‘ = Z HL(IJJ)CZZEJ :Z aijdacj

or in matrix form

91 d.’L‘l
where 9:( 0 ),dfz( dzs )
03 dxs

PROPOSITION. The functions 01, 0a, ..., 8, form a basis for VV. The basis 01, 0, ..., 0, for VV is
said to be dual to the basis E1, Es, ..., E, for V.

0= Ad¢ (36)

THEOREM. Cartan structural equations

do; = Zwij/\ﬁj (37)

dwij = Zwik/\wkj (38)



LianccHuN XU 9

Proof. By (36), then

6 = d(Ade)
— (dA) A (dE) + Ad(de)
— ((dA)AT)(Adg)
= wh

Use w=(dA)AT, then

dw = d((dA)AT)
= d(AT(dA))
= (d(AT))(dA)
= —(dA)(d(AT))
= ((dA)AT)(-Ad (A7)
= w(-wT)

= ww

2. CALCULUS ON A SURFACE

2.1. Differential Forms on a Surface

A 0-form f on a surface M is simply a differentiable real-valued function on M, and 1-form ¢ on
M is a real-valued function on tangent vectors to M that is linear at each point. A 2-form 7 on a
surface M is a real-valued function on all ordered pairs of tangent vectors v, w to M such that

1. n(v,w) is linear in v and in w;
2. 77(1)’ U)) = 777(““ ’U).
According to the definition, n(v,v) =0. The 2-form satisfies

a b
c d

nlav +bw,cv+dw) = ‘n(v,w):(ad—bc)n('u,w) (39)

the wedge product of two 1-forms ¢ A 1 is the 2-form on M such that
(@A P) (v, w) = d(v)Yp(w) — p(w) P (v)

for all pairs v, w of tangent vectors to M. Let 7!, r? be standard coordinates on IR?, and let D be
an open set in R2. If x: D — M is a proper patch for a surface M and U =2z(D), let x ' = (2!, 2?):
U — R?, where 2!, 22
call U a coordinate open set and !, x

at p=x(ug, vg) by

are the two function components of x~! and we can write 2* =7‘ox~!. We
2 coordinate functions on U. Define the tangent vectors 9/ Oz*

. (i )
p ot (u0,v0)

where 0/ 0r' =x,(U1) =xy, 0/02?=x%.(Us) =x%,. The partial derivative of f with respect to the
coordinate z¢ can be calculated via bringing it back to R%:

9
ox?

9 f- (x*%)m 9 (fox) (40)

The 1-forms da!, d2? are dual to the tangent vectors 9 /dx!,d/0x? at every point of U. Therefore,
every 1-form ¢ on the surface M is Y fidz’ on U and every 2-form on the surface is fdz' A dz?
on U for some functions f; and f on U. The exterior derivative of a 1-form ¢=>3" fidx® is

dp=>" dfiNda' (41)
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This definition depends on the choice of a coordinate patch x, but it can be shown that it’s in fact
independent of coordinate patches.

2.2. Pullback and Pushforward
F*g is the function on M such that

F*g=goF (42)
If ¢ is a 1-form on N, F*¢ is the 1-form on M such that
(F"9)(v) = ¢(Fv) (43)
If nis a 2-form on N, let F*n be the 2-form on M such that
(F"n) (v, w) = n(Fv, Faw) (44)

Let & and n be forms on N, the pullback operation satisfies
F(§+mn) = F*{+Fn
F*(EAm) = F*EAF™
Fr(dg§) = d(F*§)
Let F: M — N be a mapping of surfaces. If ¢ is a 0-form on N, F.g is the function on M such that
F.g=goF™! (45)

Proof. Choose a point p on M, then

F.(g(p)) = g(p)
= goFY(F(p))
F.g = goF~!

Further we have Fi.(gv) = g o F~'F,(v). However, if g is a function on the curve g = g(¢), then
F.g=g. 0

2.3. Integration of Forms

Let ¢ be a 1-form on M, and let «: [a,b] = M be a curve segment on a surface M. Then

!L¢=A;Jf¢=l2mmwMt (46)

/Ef:fmw»—fmm» (47)

Particularly we have

Example. If f=uv? ¢=df=v*du+2uvdv, and « is the curve segment given by a(t) = (t,t?),
then we have

a'(t) = (1,2¢)

o= [ ot
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Let 1 be a 2-form on M, and let x: [a, b] X [¢, d] = M be a 2-segment (differentiable but need
not be 1-1 or regular) on a surface M. Then

/xn/LX*n[lb/cdn(xu,xv)dt (48)

THEOREM. (STOKES’ THEOREM) If ¢ is a I-form on M, and x:[a,b] X [c,d] = M is a 2-segment,
Jao=[ o (49)
where f8x¢:fa¢+fﬁ¢_f'y¢_f§¢'

By convention, if k+# k’, the integral of a k — dimensional form on a &’ — dimensional surface
is understood to be zero [3].
It should be noted that

/Afdx/\dy:/l‘fdxdy:/[‘fdydx:—/[‘fdy/\dx (50)

2.4. Topological Properties of Surfaces
DEFINITION. M is path-connected if any two points on M can be joined by a path.

DEFINITION. M is compact if every open cover of M has a finite subcover.

Example. An open cover {(%, 1) }70;2 does not have a finite subcover. So (0,1) is not compact.
THEOREM. A subset of R"™ is compact iff it’s closed and bounded.

Example. A sphere is closed and bounded, so it’s compact.

THEOREM. A continuous function on a compact space attains a mazimum and a minimum.
Example. A Cylinder S* x (—1,1) is not compact, so there is no maximum.

DEFINITION. A surface is orientable if there is a 2-form 1 on M that’s never 0 at any point.

PROPOSITION. A surface M is orientable iff it has a continuous unit normal vector field.

Proof. Let U(p) be a continuous unit normal vector field for p € M. Define ¢,(v,w)=U,- (v x w) =
det[Up,, v, w] is bilinear in v, w and alternating. If v, w are independent, then U,, v, w are
independent and ¢,(v, w) #0. O

3. SHAPE OPERATORS

3.1. Shape Operators of a Surface

DEFINITION. If p is a point of M, then for each tangent vector v to M at p, let
Sp(v)=-V U

where U is a unit normal vector field on a neighborhood of p in M. S, is called the shape operator

of M at p derived from U.

LEMMA. For each point p of M CIR3, the shape operator is a linear operator
Spi Tp(M) = Tp,(M)
on the tangent plane of M at p.
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Proof. Use U-U =1, and differentiate both sides, we have
0=v[U -U]=2(V,U)-U=-25,(v)-U

Thus S,(v) € T,,(M). O
Example. Given a sphere z2 4+ y? + 22 =12, we have
i 1 v[z] vy
U=—| v |, ViU==| v[y] |==| v2 |==Vv
r r r r
z v|z] V3
Let v=>Y v;U;=>" Vi%, then
Sp(v) ==V, U= —%v (51)

_1
This is represented by ( " 01 )
0

Example. For a plane S,(v) =—V,U =0, because U is constant, it is represented by < 8 8 >

x
Example. Given a cylinder 22+ y?=1, we have U %( Y )
0

O —
A basis for T,,(M) is {a%’a%}’ where 8%:( (1) ),%z%( . ), then

0 o0 1 " 1
s(3)=0. (%)= -
This is the matrix ( 8 _Ol )

THEOREM. Relative to any orthonormal basts of T,(M), Sy is represented by a 2 x 2 symmetric
matrix.

Proof. If ey, ez is a basis for T,(M), then let

(-G

Consider that the basis z,, z, is tangent to M, so U -z, =0. Differentiate with respect to v,

ou Oy
4
dv

0 wtUg, =0

U(x(uo,v)))mquU':rw =0

v=uo
Ve U -y +U -2y = 0
—Sp(x0) T+ U Ty = 0
Further we have
Sp(20) Ty =U - Ty =U - Tpu = Sp(Tu) - To (52)

1. Dot product is the first foundamental bilinear form;
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2. Sp(xy) - xy, is the second foundamental bilinear form.
Now suppose
e1=fry+ gy, ea=hx,+ jx,
is any orthonormal basis. Then
b = S(e1) e
S(fru+ gwy) - (hou+ jz0)
= fhS(xu) 20+ gjS(xy) - 2o+ (fi+ gh) S(xu) -z,

= 5(62) €1
=d
Thus, S, is represented by a 2 X 2 symmetric matrix. O

THEOREM. The eigenvectors of a symmetric matriz A corresponding to two distinct eigenvalues
A1, A2 are orthogonal.

Proof. We know Awv; = \v1, Avo= Aava, and A= AT, then

(A1) -ve = (Avy)-ve
= (Av))Tvy
= vlTATvg
= vl (Awvy)
= /\gvlTvg
= Agv1- 02

(/\1 — /\2)’1}1 cUVy = 0

Since A1 — A2 £ 0, then v - v3 =0, which means two eigenvectors are orthogonal. O

3.2. Normal Curvature

DEFINITION. Let M be a surface with unit normal vector field U, and let p € M, u € T,(M),
and ||u]| =1, then the normal curvature is

E(u)=a"(s)-U (53)

where a(s) is a curve parameterized by arclength with «(0) =p, a’(0) =u.

Because a'(s) is tangent to M, a/(s) - Uy(s) =0. Differentiate with respect to s:

d
" . / - —_— P—
a’(s) - Uys) +a'(s) dsUD‘(S) 0
Evaluate at s =0, we have
d

a”(0)-Uyoy = —a’(0) T SZOUa(s)
04”(0) . Ua(O) = —0/(0) -Va/(O)U
a”(0) - Uy = u-Sp(U) (54)

which is the normal curvature at p in the direction u. Suppose u = < z ), and 22+ y? =1, and

Sp= < b ZC’ ) relates to the same basis and it’s symmetric. The normal curvature is

k(u) = u-Sy(u)

GGG

ax?+2bxy + cy?
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By lagrange, the max and the min occur when

Vk‘ = )\1Vg
200+ 2by \ _ a®
r+2cy ] N\ oy

(32)(5)=(0)
b c Y Y
The max and the min occur at the 2 eigenvectors

()5 ()5 ) rem

The max and the min normal curvature are the eigenvalues of S),.

DEFINITION. Gauss curvature K (p) =det(S,) = A As.
DEFINITION. Mean curvature H(p) = %()\1 +A2) = %tr(Sp).

DEFINITION. Principal curvatures are A1, \o; principal directions are the orthogonal eigenvectors.
They are orthogonal because S, is symmetric.

Example. Let (z, yp, 2p) be any point p of a surface function z = f(z, y), then the tangent plane is

zZ= f(xpa yp) + fz(xpa yp) (z— xp) + fy(xpa yp)(y - yp) (55)

The unit normal vector is

1 _f;c
U=t—m—F———+| —fy (56)

VIt 1 -
Tp,Yp

The unit normal vector to a plane specified by

F(z,y,2)=0

is given by
VF

\JF2+F2+ F?

Specifically for F(z,y,2) =ax +by+cz+d, we have U=+V f =+ 1 (Z)
c

U==%

va2+ b2+ c?

4. GEOMETRY OF SURFACES IN IR3

4.1. Structural Equations for Surfaces

DEFINITION. An adapted frame field on M is a triple of orthonormal Euclidean vector field (FEj,
Es, E3) on surface M such that E3 is normal to M, and so E1, E5 are tangent to M.

When we restrict the structural equations to surface M, for all v € T,(M),

93(’1)):’1)'E3:0
The first structural equation becomes

d91 0 wi2 W13 61
d92 = w21 0 w23 92 (57)
0 w31 W32 0 0

Further simplification generates
d91 = w1292 (58)
d92 = w216‘1 (59)
w31 ANO1+w3za ANy = 0 (60)
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The second structural equation becomes

dwizs = wizAws2 (61)
dwiz = wia Awas (62)
dwez = w1 Awis (63)

The shape operator here is
VoEs = w31(v)E1 4 wsa(v)Es + wss(v)Es
S(’U) = 7VUE3
= wi3(v)E1 + was(v)Es
Relative to Eq, Es, then
S(E1) = wlg(E1>E1 +WQ3(E1)E2
S(E3) = wi3(E2)E1 + waes(E2)Es

Matrix representation of S is

Gaussian curvature is

= wi3(E1)was(E2) —wis(E2)was(Er)
= (w13 Awas)(En, E2)
= —dwia(E1, E»)
Since w13 Awsg is a 2-form, and 61 A 65 is a 2-form on M as well, then suppose wi3 A waz = f01 A0,
and apply both sides to E1, Fo,
w1z Awaz(Er, Ea) = f01 A 02(E1, E»)
K =f
Therefore,
w13 Awoz = Kb N\ 0y = —dwq2 (64)
For the mean curvature, use
w13(E1) + was(Es)

= w13(E1)0a(E2) — wi3(Fa)b2(E1) + 01(E1)w2s(F2) — 61(E2)was(E1)
= (wiz A g+ 601 Awaz)(Er, Eo)

2H

Suppose w13z A2+ 01 Awsez= f01 A0, and apply both sides to E1, Es, then f=2H. And
w1z AN O+ 01 ANwas = 2HO N0y (65)

Example. Let M be a sphere of radius p, then x = pcos¢cos, y = pcos¢sind, z = psing, therefore

— psingcosh — pcos¢gsing
— = — psingsinf o = pcospcosh
0 pcos % 0
10 19

Choosing the adapted frame as E; =299 Ey= yrrt the dual forms are 61 = pd¢, 0> = pcospdh.

Let wio=ad¢+bdfh. Here p is constant, and 8, ¢ are functions. The first structural equation gives

doy = w203

(adp + bdh) pcospdb
apcospdp N db

a =0
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use another first structural equation

dfy = —wi2bh
—psingdp ANdd = —(adp+bdf)pdd
—psinpdp ANdf = bpdp N db
b = —sing
Thus w2 = —singdh, to calculate the Gaussian curvature via (64),
K dwia —cosopdp N db 7% (66)

C 000y (pdo) A(pcosgdd)  p
4.2. Isometries

The intrinsic distance between p and ¢ on surface M is

b
plp.q)i=int La)=inf [ Ja’(t) (67)
An isometry f: M — M is a bijective differentiable map such that
(fev)- (frw)=v-w

for all v, w e T,(M). TFAE:

1. (fwv) - (friw)=v - w;

2. [If @)l =llvl);

3. f preserves orthonormal basis

A map f: M — M is a local isometry if it preserves the dot product.
DEFINITION. A property of a surface that is invariant under isometries is intrinsic.
THEOREM. Gaussian curvature K is intrinsic.

Proof. 1st structional equation on M:
délzw_lg/\ég, dégzw_gl/\él
Take F™* for both sides,
F*dgl = F*(w_lg/\ég)
dF*0y = F*wizAF*0,
do, F*o1a N\ 0o

Similarly we have
dfs = F*tog1 A0y

By Cartan’s lemma, F*13 =wi2. Use Gauss’s equation on M,

dors = —K60, A6,
F*dios = —F*KF*0, A\ F*0y
dF*wn = —F*K0, A6,
dW12 = —KOFyl/\HQ
Therefore
K = KoF
At any point pe M,
K(p) = KoF(p
K(p K(F(p)
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The Gaussian curvature K at p is the same as K at F(p). O

DEFINITION. A mapping of surfaces F: M — N is conformal provided there exists a real-valued
function A >0 on M such that

[1Ex(op)[| = A(p)[lvg | (68)

for all tangent vectors to M. The function X is called the scale factor of F. A conformal mapping
preserves angles. When A=1, F is a local isometry.

5. RIEMANNIAN (GEOMETRY

5.1. Geometric Surfaces

DEFINITION. An inner product on a vector space V is a function <,>:V xV — R that has these
8 properties: bilinearity; symmetry; postive definitness.

Example. Conformal change <v,w > :Uh—;U

DEFINITION. A geometric surface is a surface M with an inner product on T,(M) for each pe M
s.t. if XY are differentiable vector fields on M, then <X,Y > is a differentiable function.

DEFINITION. A frame field on a geometric surface is a pair of orthonormal vector field Ey, Es.
Their dual 1-forms 01,02 are 1-forms on M s.t. 0;(E;)=0;5, or 0;,(v) =<v, E;> .

Let E_l, E> be another frame field on M , and

(B B) = (8 ) 00 02

a1 a2

= Bf
= BAEA
= BA

9:1 _ (bn b12 )( 91)
02 ba1 bao 02
0
E

= AT (69)
The relation between w and w:

do = d(B9)
= (dB)#+ Bdf
= (dB)B~'0+ Buwf
= (dBB~ '+ BwB~1)f
dBB~'4 BwB~!
= (dAT)A+ ATwA
= w+ ATwA (70)

&
Il
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The area form is
01 A0y = (b1101 + b1aba) A (ba161 + bazba)
b11bag — b12b21)01 A O
det B)61 A 0O
det AT)0; A 0y
(det A)B1 A O
671/\9_2 = £60; N0y

(
(
(
(

1. If E, E- has the same orientation as FEq, Es,

A — cosyp —sing
~ \sing cosyp

w = (dAT)A
0 1
(4 Jee
0 1
ATCUA = (1 0 >W12
. 0 1 \__
R N R e
0 1
W2 = wiz+dy (71)
diw; = dwiz
01 N0y = 01 A0
K =K

2. Similarly if E, E» has the opposite orientation as Ey, Es,

A — cosy  singp
~\ —sing —cosy

Wiz = —(wi2+dp) (72)
dio;s = —dwia
01 N0y = —01 A0y

K =K

K is independent of the choice of frame fields, it’s defined as the Gaussian curvature of the
geometric surface.

Example. Poincare half-plane

B = {(2,) €Ry >0} with  <v,0 () =8

where v, w € T(, ) (H?) ~ R?.

S E e T T
1
2
0./ o0
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Ei= ya—i, FEo= ya% is a frame field. The dual 1-forms are 64 :%daz, 0 :%dy. The first structional
equations are

= —dyAdz
Yy
1 1
= —dxAN—d
Y Yy 4
= wiaNbs
dy = —dyAdy
Yy
— 0

= 7&)12/\91
W12 = ld:ﬁ
Y
1
dwis = —?dy/\dx
1 1
= —dx A—dy
Y Y
= 01 A0y

So the Gaussian curvature of H? is K = —1. The area of Poincare half-plane is then

Area(H?) :/ 01 A 0o
H2

1
= —dxz ANd
/]H2y2 zney
1
= —dzd
/A{zyQ v
o0 o0 1
—dydx
/_oc/o y?
_ /°°71 =
—00 Y

= —00

dx
0

It should be noted that
//fdx/\dy://fd:cdy://fdydx:—//fdy/\dx (73)
A A A A

5.2. Covariant Derivative

DEFINITION. The covariant derivative in R? is a function:

V:X(R%) x X(R?) — X(RY)
V[Xi]
VX = | VX,
V[X3]

satisfying
1. R —bilinear in both V and X;
2. f—linear in V: Vyy = fVyX;
3. Leibniz rule in X: Vy(fX)=V[f]X + fVX.

DEFINITION. On an open set U of a geometric surface, a function

V:X(U)x X(U) — X(U)
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is a covariant derivative on U if it satisfies these 8 properties.

THEOREM. The connection form wia on (U, Eq, E3) defines a covariant derivative on U by
VVEl = wlg(V)Eg
VVEQ = 7W12(V)E1
Vv(fiE) = V[filE1+ fiwia(V)Es
Vv (faE2) = V[fa]E2— fowi2(V)Eq
An arbitrary X = f1F1+ faFE2,€X(U) is
Vv(X) = (VIfil = fawia(V)) Er + (V[ fo] + fiwi2(V)) B2
This VyX is clearly R — bilinear, f —linear in V, we can check it also satisfies the Leibniz rule.

DEFINITION. Let a: [a, b] = M be a curve in a geometric surface and let X be a vector field in
M along the curve a, and X(a*T,(M)) is a differentiable vector field in M along o. A covariant
derivative along o is a function

2. R Ty (M)) = X(a T(M))
such that
1. R —linear in X;
2. Leibniz rule in X: (fX) x4 f dt ;

3. IfX is the restriction of X on M, then W:VQ,@)X

4o 7 <V W > < Y w>+<v, 2X dt

THEOREM. Given a covariant derivative V on M and a curve a(t) in M, there exists a unique

. .. D
covariant derivative o along a.

Proof. On a framed open set (U, Ey, E»),

V: ZVE-

Zv E+ZVV 0 E

Use this as the definition of %/ . Verify the 4 properties. O

DEFINITION. If a:[a,b]— M is a curve on a geometric surface M, then o’ is a vector field along «.

(1) =L m(%)

O//(t) def D

7'
A curve a in a geometric surface is a geodesic if o’ =0.

The acceleration is defined as

5.3. Gauss-Bonnet Theorem

Let B:[a,b] — M be a umt speed curve in an oriented geometric surface, and T'= ' = ﬂ*( )

Because |T'||=1, T" —— — will be orthogonal to 7',
<I(s),T(s)> = |T|*=1
4 1(s)1(5)> = <Pl rser, D5 o
DLrs g
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Since M is oriented, there is a positive oritented orthogonal frame T', N s.t. T' = kN for some

k €R. k is the geodesic curvature.
THEOREM. A wunit-speed curve on an oriented geometric surface is a geodesic iff k=0.
Suppose T makes an angle ¢ relative to F; in an oriented orthogonal frame Fy, Fo,

T\ [ cosp sing FEq
N J \ —sinp cosyp E,

Then take the derivative

DT
T = —/—
ds
d DE, de inoDE2
sing— 1+ cosp s +cos<,0d8 2+ singp ds
d . i
B di (=sinpE1 + cospEy) + cospVpi() E1 +singV (o) Bz
d .
- diN—i- (cosp)wia(B') Bz + (sing)war(B) £
d(p I
oY N
(ds +wi2(B ))

Therefore the geodesic curvature is

d
k = d—i-ﬁ-wu(ﬁl)

DEFINITION. The total geodesic curvature on ( is defined as

/abki(s)ds = /lb%ds+/zzbwl2(ﬁl(8))d8

o(b) — p(a) + / wrs

B

(75)

THEOREM. (GAUSS-BONNET) The total Gaussian curvature M of a compact orientable geometric

surface M is 2w times its Fuler characteristic:

/L KdM =2rX(M)

(76)

Proof. Let A, =change of angle along 0;, ¢; is exterior angle and ¢; is exterior angle at the end of

the ith edge. Total geodesic curvature on the boundary of a rectangle 9D is

4 4 4
Z/k: ZAi+Z/W12
i=1 70 i=1 i=1 70
4
= 271'—1._2181'4—‘/6;,012
4
= 27r—i:Z1 (ﬂ—Li)+%dw12
4
= —277—}—; Li—//DK91A92
4
- 27r+;Li//DKdM
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Suppose M can be cut up into rectangle patches. Let v, e, f be the number of vertices, edges, and

faces in a rectangle partition of M. Sum up total geodesic curvature,
4
k Y N // KdM
LS s,

x  i=1
0 = 727rf+27rvf//KdM
D

//DKdM

—Anf 427 f + 27v

= —2me+2nf+ 2mv
= 2r(v—e—+ f)
= 27X (M)

The theorem shows that total Gaussian curvature is a topological invariant.

O

THEOREM. Let S be a surface, D is an oriented polygonal region in a geometric surface, k is the
geodesic curvature, K is the Gaussian curvature at a point in D. If A; is each angle of the irregular

point. The Gauss-Bonnet Theorem is

i (W—Li)-i-/

i=1 g

kds—i—//KdM = 27X (M)
D D

Proof. If we use a rectangle partition, and now the boundary curves survive,

;i/s)k ;27r+;u/[jKdM
/aDkds 27rf+27r(vn)+§Li/[jKdM

n
/ kder//KdM = 747rf+27rf+2m)72n7r+z L;
aD D

i=1

Different from previously 4 f = 2e, here with the boundaries we have 4 f =2e — n, thus

/ kder[/KdM = 7r(n726)+27rf+27r072n7r+z L
oD D

i=1
/ kds+//KdM
aD D

(w—Li)+/6Dkds+/LKdM = 22X (M)

This is based on that the polygon can be partitioned by rectangles.

27r(vfe+f)fn7r+z Li

i=1

M-

1=1

Example. Geodesic triangle in Euclidean surface, where k=0, K =0, X =1, then

3
Z (WfLi)+/ 0ds+//0dM = 27
= oD D
3
ZLi = T
i=1

More generally for a geodesic polygon in geodesic surface,

n

> (wai)+/ 0ds+/ KdM
1 oD D

) ;h = (n72)7r+/ﬁjKdM

2T

(77)
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Specifically for Euclidean space where K =0, Y7 | 1; = (n — 2)m. If it’s a geodesic triangle on a
sphere with radius r, then we have K :%, X =1, and

3
Z(’/T*Li)+/ Ods+//i2dM: 27
oD pT

1=1

3
377—2 Li—i—% = 27
i=1

. A
i = ’/T*ﬁ
i=1
COROLLARY. Let M be a compact orientable surface. Then TFAE:
1. M has a continuous nowhere-vanish vector field V;
2. X(M)=1;
3. M is a torus.
Proof. Assume 1), let Ey :ﬁ, E;=J(FE4). So the entire surface is a framed open set. There is

a unique connection form wis on M,

—K0; ANOs
= —KdM

dw12

According to Guass-Bonnet Theorem, then

0:/ wlgz/dwm:—// KdM:—Qﬂ'X(M)
oM M M

So X(M)=0. Thus 1) = 2), 2) = 3) by Classification Theorem, 3) = 1) by construction. O

6. MANIFOLDS

6.1. Topological Manifolds

DEFINITION. A topological space M is locally Euclidean of dimension n if every point p in M has
a neighborhood U such that there is a homeomorphism ¢ from U onto an open subset of R™. The
pair (U, ¢: U —R"™) is a chart, U is a coordinate neighborhood or a coordinate open set, and ¢ is
a coordinate map or a coordinate system on U. A chart (U, ¢) is centered at p €U if ¢(p)=0.

DEFINITION. A topological manifold is a Hausdorff, second countable, locally Euclidean space. It’s
said to be of dimension n if it’s locally Euclidean of dimension n.

DEFINITION. Two charts (U, ¢: U — R™), (V, ¢: V = R"™) of a topological manifold are C> —
compatible if the two maps
Gotp Lp(UNV) = p(UNV), top Lp(UNV)—=p(UNV)

are C*. These two maps are called the transition functions between the charts.

DEFINITION. A C atlas or simply an atlas on a locally Euclidean space M is a collection = {(U,,
o)} of pairwise C* — compatible charts that cover M, i.e., such that M =U,U,.

An atlas 9t on a locally Euclidean space is said to be maximal if it’s not contained in a larger
atlas; if 4l is any other atlas containing 91, then = 91.

DEFINITION. A smooth or C* manifold is a topological manifold M together with a mazximal
atlas. The maximal atlas is also called a differentiable structure on M. A manifold is said to have
dimension n if all of its connected components have dimension n. A 1-dimensional manifold is
called a curve, a 2-dimensional manifold a surface, and an n-dimensional manifold an n-manifold.
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DEFINITION. A Lie group is a C* manifold G having a group structure s.t. the multiplication map

wGxG—=G
and the tnverse map
1G—=G, (r)=2"!
are both C*°.

6.2. Categories and Functors

A category consists of a collection of elements, called objects, and for any two objects A and B, a
set Mor(A, B) of elements, called morphisms from Ato B, s.t. given any morphism f € Mor(A, B)
and any morphism g € Mor(B, C), the composite go f € Mor(A4, C) is defined. It satisfies:

i. the identity axiom: for each object A, there is an identity morphism 14 € Mor(A, A) s.t. for
any f€Mor(A, B) and g € Mor(B, A),
fola=f, laocg=yg
ii. the associative axiom: for f € Mor(A4, B), g € Mor(B, C),and h € Mor(C', D),
ho(gof)=(hog)o f
If feMor(A, B), we often write f: A— B.
DEFINITION. Two objects A and B in a category are said to be isomorphic if there are morphisms
f:A— B and g: B— A s.t.
gof=1la, fog=1p
In this case both fand g are called isomorphisms.
DEFINITION. A (covariant) functor F from one category C to another category D is a map that

associates to each object A in C an object F(A)in D and to each morphism f: A — B there is a
morphism F(f): F(A) — F(B) s.t.

7. .F(lA) = 1_7-'(A)
ii. F(fog)=F(f)oF(g)
DEFINITION. A contravariant functor F from one category C to another category D is a map that

associates to each object A in C an object F(A)in D and to each morphism f: A— B there is a
morphism F(f): F(A) — F(B) s.t.

i. .F(lA) :1]-'(A)
i. F(fog)=F(g)oF(f)

Example. The pushforward map Fi:T,(N) = Tp(,)(M) is a functor because
(GoF),=GoF,

The pullback map otherwises satisfies
(GoF)*=F*oG*

6.3. Vector Bundle

A bundle map construction is a functor from the category of smooth manifolds to the category of
vector bundles.

DEFINITION. Let M be a smooth manifold, the tangent bundle of M is the union of all the tangent
spaces of M:
™= ] n,M=]] T,M
peEM pEM
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DEFINITION. Product bundle is a special case of w: E+— M:

M xVi—M

7. APPENDIX

7.1. Generalization Map
The generalization from single-variable calculus to several-variable calculus is as follows [3].

solution to differential equations

indefinite int 1 —
incehnite integra { integral of a connection, vector field, or bundle

unsigned definite integral — Lebesgue integral — integration of ¢ measure space

signed definite integral — integration of forms

7.2. Notation Table

Math Physics
f;f(x)dx =0 closed 1-form f(z)dx conservative force
exact form potential function

Table 2. Terminology Dictionary
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