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ABSTRACT  

 

GPS software receivers are widely used in GPS-related 

algorithms’ design and implementation. Two significant 

considerations involved in developing a GPS software 

receiver are the management of the newly introduced 

algorithms, and the execution performance of the baseband 

processing. A Graphics Processing Unit (GPU) can be used 

to accelerate the execution of a GPS software receiver. This 

paper introduces a novel GPS software receiver named 

“NAVSDR”. NAVSDR adopts a modular design, which 

makes it scalable and reusable to accommodate new 

algorithms, such as GPU-based acquisition and tracking. 

The paper also proposes novel GPU-based acquisition and 

tracking architectures, which are independent of the GPU 

device, the signal type, and the integration length. The 

focus of the paper is on the following aspects: introducing 

the modular design of NAVSDR, demonstrating the 

detailed architectures of the proposed GPU-based 

acquisition and tracking, providing tests to evaluate the 

execution performance of the GPU-based acquisition and 

tracking, and describing how NAVSDR integrates the 

implementation of the proposed GPU-based acquisition 

and tracking properly and agilely with its modular design. 

 

The performance evaluation tests indicate that the GPU-

based acquisition and tracking can accelerate the execution 

of NAVSDR significantly, especially for the tracking 

process. With an NVIDIA GeForce GTX 750 Ti GPU and 

tested signals of 9.75 MHz sampling rate and 4-bit 

resolution, the GPU-based tracking in NAVSDR can 

achieve above 50 times performance gain at the peak 

compared with its CPU-based counterpart. 

 

 

1. INTRODUCTION  

 

GPS software receivers are widely applied in designing and 

testing new satellite navigation related algorithms. When 

building a GPS software receiver, a developer should not 

only consider the software function, but also the execution 

performance. The required high computational throughput 

in the signal acquisition and signal tracking processes 

prevents a standard GPS software receiver, which adopts 

Single Instruction Single Data (SISD) algorithms on a 

Central Processing Unit (CPU), from working in real time 

[1]. An efficient replacement for a CPU is a Graphics 

Processing Unit (GPU). A GPU is composed of massive 

parallel processors with high floating point performance 

and memory bandwidth. It can be used to accelerate both 

the acquisition and tracking processes in GPS software 

receivers. Accelerating the execution of GPS software 

receivers using General-Purpose computing on the GPU 

(GPGPU) has been carried out by many researchers [2-7]. 

A performance comparison between several GPU-based 

GPS SDRs can be found in [7]. This paper proposes novel 

GPU-based acquisition and tracking algorithms, which are 

independent of the GPU device, the signal type, and the 

integration length. Compared with existing GPU-based 

baseband algorithms, the proposed algorithms can achieve 

a competitive performance. 

 

A significant consideration involved in building a GPS 

software receiver is how to maximize and maintain its 

flexibility and scalability in the face of the increase in the 



number of the developed algorithms. A conventional GPS 

software receiver composed of one component will 

become bloated and unorganized after the addition of too 

many new functions. For example, the GPU-based 

acquisition and tracking algorithms perform the same 

functions as the already existing CPU-based versions in a 

GPS software receiver. Therefore, following the simplest 

practice of directly adding the code that implements the 

new GPU-based algorithms into the extant program will 

increase the size and complexity of the software. In fact, as 

more overlapping functions are introduced, the code of a 

conventional GPS software receiver could be rendered 

bloat, which could lead to a loose organization of the 

deployed software. 

 

A modular design, which divides the software into several 

components according to different functions, can be 

adopted to address the aforementioned issue. The 

advantages of a modular design are as follows: 1) 

Independent components can integrate into different 

versions of GPS software receivers. A modular design can 

facilitate assembling the code, and it would only package 

the necessary components for the deployment of the 

software. This mechanism will encapsulate the final 

deployed software in a relatively small size. 2) A well-

defined component provides the interface for the 

invocation of the external functions, while its 

implementation details are hidden. Therefore, multiple 

components of a GPS software receiver can be developed 

concurrently, without being interfered with each other. 

Moreover, when new components are integrated, a 

developer only needs to consider the coupling of the 

interfaces, instead of modifying the whole software. 

Therefore, a modular design will effectively increase the 

scalability of the software for future development.   

 

This paper introduces a GPU-based modular GPS software 

receiver named “NAVSDR”. NAVSDR is composed of 

seven pre-defined components according to the function 

division. The modular design enables NAVSDR to 

accommodate new algorithms, such as GPU-based 

acquisition and tracking properly and agilely. The 

proposed novel architectures for GPU-based acquisition 

and tracking are implemented in NAVSDR.  

 

The remainder of this paper is organized as follows. First, 

the detailed modular design of NAVSDR is presented. 

Then, the GPGPU technology used to accelerate the 

execution of NAVSDR is introduced. Novel architectures 

for GPU-based acquisition and tracking are proposed and 

evaluated in the following two sections. Another section 

demonstrates how NAVSDR assembles the newly built 

GPU-based acquisition and tracking with its modular 

design. Finally, the conclusions are presented. 

 

 

2. MODULAR DESIGN  

The modular design includes both the component design 

and the interface design. The component design defines the 

expected function of each component, while the interface 

design defines the interface specifications between 

different components. A good modular design divides the 

program into loosely coupled, independent, and reusable 

components. The number of the defined interfaces is at the 

minimum level. While in each component, the essential 

functions are complete. 

 

NAVSDR is composed of seven components: the 

preprocessing component, the correlation component, the 

acquisition component, the tracking component, the 

measurement extraction component, the Position, Velocity 

and Time (PVT) solution component, and the utility tools 

component. Each component is packaged into a dynamic-

link library (DLL), and invoked by other components and 

the main application, which is the entrance of NAVSDR. 

 

In NAVSDR, the aforementioned seven components are 

designed according to their different functions. Each 

component’s function can be described as follows. The 

preprocessing component reads the pre-stored intermediate 

frequency (IF) sampling data into a data buffer residing in 

the CPU memory for further processing. The correlation 

component generates the local carrier and code replicas, 

and correlates them with the IF samples. The acquisition 

and the tracking components use the output of the 

correlation component to accomplish the signal acquisition 

and tracking functions. The measurement extraction 

component is responsible for extracting carrier phase and 

pseudorange measurements from the output of the tracking 

component. The PVT estimation component estimates the 

position, velocity, and time from the extracted 

measurements. Finally, the utility tools component 

provides the basic matrix operation functions, the time and 

coordinate transfer functions, and other common functions 

for NAVSDR. 

 

The interface design of each component is based on the 

relationship between different components. In NAVSDR, 

the utility tools component is invoked by all the other 

components. The correlation component is invoked by the 

acquisition component and the tracking component. 

Moreover, the tracking component is the central 

component, which invokes the measurement extraction 

component. When more than four satellites’ measurements 

are extracted, the measurement extraction component 

would invoke the PVT estimation component to generate 

the final position, velocity and time results. The 

preprocessing component, the acquisition component, the 

tracking component are independent from each other, and 

they hold the interfaces to integrate into a complete GPS 

software receiver. The modular design of NAVSDR is 

shown in Fig. 1. Each block in Fig. 1 represents a 

component of NAVSDR, in which the detailed functions 

of each component are listed. Moreover, the link lines 

between different blocks represent the invocations between 

different components in NAVSDR.



 Matrix operations
 Buffer operations
 Definition of common structures, 

constant numbers, and functions

Utility

 Resample the raw IF data
 Read data into memory  buffer
 Verify the correctness of the 

first 1ms data

Preprocessing

 Estimate the position, velocity and time
 Calculate the precision of the estimation
 Analyze the residuals of the raw 

measurements

PVT Estimation

 Set acquisition mode 
 Set Doppler searching range
 Detect the signal

Acquisition

 Set FLL/PLL/DLL bandwidths
 Set FLL/PLL/DLL orders
 Track the acquired signal

Tracking

 Set coherent/noncoherent correlation time
 Generate local carrier and code signals
 Correlate the received signal

Correlation

 Set the extraction rate
 Extract the measurements
 Determine whether to 
       output Rinex files

Measurement Extraction

 
Fig. 1 Modular design of NAVSDR 

 

 

3. GPGPU TECHNOLOGY  

 

Compared with a CPU, a GPU is composed of massive 

cores with tremendous computational power and high 

memory bandwidth [8]. GPGPU provides an approach to 

accelerate scientific applications, including the correlation 

process in GPS software receivers. 

 

CUDA is a parallel platform invented by NVIDIA for 

C/C++/Fortran programming on the GPU. CUDA C is 

employed in this paper to design and realize the GPU-

based acquisition and tracking algorithms. In order to 

utilize the computational power of the multiprocessors in 

GPU, kernels (functions) that are executed by each 

individual CUDA thread should be defined as C functions 

using the keyword “__global__”. Massive threads can 

execute on the GPU concurrently. Each 32 threads are 

coupled into a warp so that they can execute one common 

instruction with different data at a time. Branch divergence, 

which means executing different instructions in the threads 

of a warp, will significantly decrease efficiency, and thus it 

should be avoided. Warps are grouped into blocks, where 

the threads of a block are executed concurrently on one 

multi-threaded Streaming Multiprocessor (SM). Blocks are 

further grouped into a grid, where they are executed 

concurrently on multiple SMs in a GPU. 

 

CUDA also provides different types of memories in the 

GPU to maximize the performance [9]. Global memory, 

shared memory, local memory, and registers are used in the 

proposed GPU-based architecture design. They are 

allocated for grid, block, and thread. The bandwidth of 

different kinds of GPU memories varies. The registers 

provide the fastest memory transfer with nearly 8TB/s 

bandwidth. The shared memory and global memory follow 

the registers in terms of the memory transfer speed. The 

local memory is an abstract memory type to hold spilled 

registers. Register spilling occurs when a block requires 

more registers on an SM than the available. GPUs with 

CUDA capability 2.0 or higher spill registers to L1 cache, 

which is physically integrated with the shared memory. 

The older GPUs spill registers directly to the global 

memory. Therefore, the local memory’s bandwidth is 

dependent on the device. The slowest memory transfer is 

between the host memory and the device memory with 

about 8GB/s bandwidth. This bandwidth value is limited 

by the Peripheral Component Interconnect Express (PCIe) 

connector between the CPU memory and the GPU memory. 

 

 

4. GPU-BASED ACQUISITION 

 

Signal acquisition is a search process that determines the 

visible satellites and provides rough estimates of their code 

delays and Doppler shifts. A common and efficient signal 

acquisition technique is circular correlation using FFT. 

Circular correlation works as follows. The received signal 

is first stripped off the carrier, which is compensated by 

each possible Doppler shift. Following that, the received 

signals and local code replica signals are transformed into 

the frequency domain using FFT. The complex conjugate 

of the FFT of each local code signal is multiplied by each 

FFT of the Doppler compensated signal. The results of the 

multiplication process are transformed back to the time 

domain by applying IFFT, which generates the required 

correlation at all the possible code delays and Doppler 

shifts. The circular correlation process can be described by: 

𝑝(𝑓𝑑 , 𝑘, 𝑛) = 𝐼𝐹𝐹𝑇( 𝐹𝐹𝑇(𝑆𝐼𝐹(𝑛) ∙  𝑅𝑐𝑎𝑟𝑟(𝑓𝑑 , 𝑛)) 

                                 ∙ 𝐹𝐹𝑇∗(𝐶𝑝(𝑘, 𝑛))                                   (1) 

where 𝑆𝐼𝐹(𝑛) is the received IF signal, 𝑅𝑐𝑎𝑟𝑟(𝑓𝑑, 𝑛) is the 

local carrier replica signal, which is generated for a 

possible Doppler shift, 𝑓𝑑 , and 𝐶𝑝(𝑘, 𝑛) is the local code 

replica signal, which is generated for a possible satellite, 𝑘. 

 



The acquisition process is repeated for each possible 

satellite, which is time consuming. Executing the 

acquisition process on a GPU can lead to a huge reduction 

in the acquisition time. The acquisition process can be 

accelerated by the GPU using the cuFFT library in CUDA 

Toolkit. In the GPU-based circular correlation algorithm, 

local carrier replica signals with different Doppler shifts 

are generated and stored consecutively in an array, which 

resides in the GPU memory. The Doppler removal is 

processed in parallel using a kernel function for calculating 

two vectors’ product. The advanced data layout feature of 

the cuFFT library is used in the algorithm design of the 

GPU-based acquisition. This feature can allow 

transforming a subset of the product array. The subset array 

used here contains the product of each local carrier replica 

signal, compensated with Doppler shift, and the received 

IF signal. The advanced data layout feature can be set by 

calling the function “cufftPlanMany”. Similarly, the FFT 

process of the local code replica signals and the final IFFT 

calculation can also benefit from this batch process feature. 

Another kernel function is written to generate the local 

code replica signals and complete the code correlation after 

the FFT process. The parallel GPU-based acquisition can 

search the visible satellites, the Doppler shifts, and the code 

delays concurrently. As a comparison, the CPU-based 

circular correlation can only search the code delays or the 

Doppler shifts in a parallel way. A detailed description of 

the GPU-based circular correlation algorithm is shown in 

Fig. 2, where, 𝑇 is the coherent integration length, 𝑁𝑓 is the 

number of Doppler shifts, 𝑁𝑠 is the number of samples in 

𝑇  ms, and 𝑁𝑐  is the number of satellites signals being 

processed. 
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Fig. 2 The GPU-based acquisition using FFT 

 

The final output array of the GPU-based acquisition 

contains the correlated results at every possible Doppler 

shift and code delay. The size of the array is equal to the 

multiplication of the number of possible visible satellites, 

the number of possible Doppler shifts, and the number of 

possible local code replica signals. Before continuing with 

the signal detection process, the output array, which has a 

huge size, is transferred from the GPU memory to the CPU 

memory in a coalescent way. The array should be divided 

into 𝑁𝑐 equal parts in order to extract the acquisition results 

in a way similar to the one that is adopted in the CPU-based 

acquisition. 

 

The aforementioned GPU-based acquisition design is an 

ideal solution for parallel acquisition process. However, 

the required GPU memory of the algorithm is very huge. 

Considering the maximum transform size of the cuFFT 

library is limited by the available GPU resources [10], the 

cuFFT library would sooner or later fail to allocate GPU 

resources for such a huge size of array, when the 

integration time is increased. This could prevent the 

application of IFFT in the last step of the proposed GPU-

based acquisition. A compromise can resolve this issue by 

serially applying the final IFFT for 𝑁𝑐 times. This practice 

is at the cost of degrading the parallel processing, but it 

successfully reduces the maximum required transform size 

from 𝑁𝑐 ∗ 𝑁𝑓 ∗ 𝑁𝑠  to  𝑁𝑓 ∗ 𝑁𝑠 , which guarantees the 

proposed GPU based acquisition to process more than 10 

ms long coherent integration on a GPU with medium 

calculation power. The implementation of the GPU-based 

acquisition in this paper adopts the aforementioned 

compromised algorithm. NAVSDR provides an 

acquisition view as shown in Fig. 3 to visualize the 

correlation results of each satellite in the acquisition 

process. 

 

 
Fig. 3 The acquisition view of NAVSDR 

 

In order to evaluate the execution performance of the 

proposed GPU-based acquisition algorithm, the cold start 

experiment with different coherent integration 

lengths,  𝑇 𝑚𝑠 , is conducted. The tested GPS signal is 

complex numbers with 19.5 MHz sampling rate (9.75 MHz 

for both in-phase and quadrature-phase samples), and 4-bit 

resolution. The Doppler shift range is [-5000 Hz, 5000 Hz], 

and the number of searched satellites is, 𝑁𝑐 = 32 . The 

coherent integration time length range is [1 ms, 10 ms] with 

an interval of 1 ms. In this test, with a Doppler range of 

±5000 𝐻𝑧 , the number of Doppler bins,  𝑁𝑓 , with a 

separation of 1/𝑇, is calculated as follows. 

             𝑁𝑓 =
5000 − (−5000)

1 (0.001 ∗ 𝑇)⁄
+ 1 = 10𝑇 + 1             (2) 



Besides the complexity of the algorithm itself, the 

implementation’s performance of the GPU-based 

acquisition is also influenced by the GPU device used. The 

chosen device here is an NVIDIA GeForce GTX 750 Ti 

GPU. Its technical specifications can be found in [11]. The 

execution time of the GPU-based acquisition with different 

coherent integration lengths is collected and plotted in Fig. 

4. A serial implementation of the CPU-based acquisition 

using FFTW library provides a benchmark for evaluating 

the execution performance of the GPU-based acquisition. 

The CPU used here is a quad-core 3.6 GHz Intel Core i7-

4790. 

 

 
Fig. 4 The execution time of the CPU-based acquisition 

and the GPU-based acquisition 
 
With the coherent integration time increased, the execution 

time of both the GPU-based and the CPU-based acquisition 

processes tends to increase in a long run. However, the 

execution time of the CPU-based acquisition decreases 

when the coherent length increases from 3 ms to 4 ms. This 

can be explained by the fact that the speed of the FFTW 

library in “MFLOPS” fluctuates with the input array size 

[12]. The execution time of the GPU-based acquisition 

approaches that of the CPU-based acquisition when the 

integration length is 1 ms or 2 ms. This is because a low 

computational load cannot exert the full power of the GPU. 

On the contrary, the overhead of the kernel functions and 

the memory transfer between the GPU memory and the 

CPU memory compose a large portion of the execution 

time, which would cancel out the speedup brought by the 

GPU-based computation. This phenomenon will also occur 

when evaluating the execution performance of the GPU-

based tracking. With the integration time increased, the 

computational gain on the GPU becomes significant. When 

the integration time is 10 ms, the speedup brought by the 

GPU-based acquisition is about 3.3 times. 

 

 

5. GPU-BASED TRACKING  

 

Following signal acquisition, a tracking process is 

performed. The tracking process aims at estimating the 

code and carrier parameters with high accuracy, and 

providing a continuous tracking of the change in the 

received signal. The tracking process also requires a 

correlation process. However, the correlation is calculated 

at the current estimates of the code and carrier parameters, 

not at all the possible code delays and Doppler shifts, like 

in the acquisition process. The prompt correlated 

signal,  𝑆𝐼𝑄,𝑝, can be found from 

                𝑆𝐼𝑄,𝑝 = ∑ 𝑆𝐼𝐹(𝑛)𝑅𝑐𝑎𝑟𝑟
∗ (𝑛)𝐶𝑝(𝑛)

𝑁−1

𝑛=0

                     (3) 

where 𝑆𝐼𝐹(𝑛)  is the received IF signal, 𝑅𝑐𝑎𝑟𝑟
 (𝑛)  is the 

local carrier replica signal, and 𝐶𝑝(𝑛) is the local prompt 

code replica signal. The early correlated signal,  𝑆𝐼𝑄,𝑒 and 

the late correlated signal,  𝑆𝐼𝑄,𝑙 used for code tracking loop 

can be also calculated in a similar way. 

 

The tracking process can be parallelized on both the 

channel level and the sampling data level, where each 

channel is responsible for the correlation of one satellite. 

Considering the aforementioned CUDA programming 

model, each channel’s correlation process can be mapped 

into one block, and each signal sample can be mapped into 

one thread. The integration after carrier and code wipeoff 

can be transformed to a block reduction, which is the 

process of calculating the sum of the variables in threads of 

a block. The algorithm of the GPU-based tracking is shown 

in Fig. 5, where 𝑁𝑐 is the number of satellites signals being 

processed, and 𝑁𝑠  is the number of samples in one 

correlation process. Since the assigned blocks per 

grid, 𝑔𝑟𝑖𝑑𝐷𝑖𝑚. 𝑥, and threads per block, 𝑏𝑙𝑐𝑜𝑘𝐷𝑖𝑚. 𝑥, are 

limited numbers, they may be less than 𝑁𝑐 , 𝑎𝑛𝑑 𝑁𝑠 , 

respectively. There are two for loops assisting the blocks 

and threads to complete the whole computation. The 

proposed algorithm is actually applicable to all GNSS 

signals, since 𝑁𝑐 and 𝑁𝑠 are all variables in this algorithm. 

Therefore, the algorithm is independent of the correlation 

time length, the code type, and the GPU device, which 

makes the proposed GPU-based tracking architecture 

reusable and scalable.  

 

The GPU-based tracking process needs six reductions in 

each block to generate the early, prompt, and late results 

for both in-phase and quadrature-phase received signals. 

There are two subset algorithms for the block reduction in 

the GPU-based tracking. 1) The block sum can be 

calculated using a similar tree-like reduction described in 

[13]. Shared memory of the GPU is used in this process. 

The aforementioned design and implementation approach 

is applicable on all CUDA-enabled GPUs. 2) The block 

sum can be also calculated using warp shuffle functions. 

For the GPUs with CUDA capability greater than 3.0, some 

new CUDA features including warp shuffle functions are 

introduced. “__shfl_down” and “__shfl_xor” functions can 

be utilized to perform a reduction across 32 threads in a 

warp without consuming any shared memory [9]. The sums 

of different warps in a block can be added up using atomic 

function in CUDA to generate a correct block sum. Similar 

to the GPU-based acquisition, the last step of the GPU-

based tracking is to transfer the correlation results from the 

GPU memory to the CPU memory. 
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Fig. 5 The GPU-based tracking 

 

NAVSDR provides a tracking view as shown in Fig. 6 to 

visualize the correlation results of each satellite in the 

tracking process. 

 

 
Fig. 6 The tracking view of NAVSDR 

 

In order to evaluate the execution performance of the 

proposed GPU-based tracking algorithm, the same CPU-

based acquisition result is used to initialize both the GPU-

based and CPU-based tracking processes. The parameters 

of the tested GPS signal and the devices used here are the 

same as that in the performance test of the GPU-based 

acquisition. In the performance test of the GPU-based 

tracking, the number of the satellites signals being 

processed,  𝑁𝑐 , is variable, which is different from the 

situation in the cold start mode of the GPU-based 

acquisition. A common practice to evaluate the 

performance of the GPU-based tracking is to obtain the 

number of tracking channels the GNSS software receiver 

can maintain in real time [7]. The coherent integration time 

for each satellite is usually set to be one code length. Since 

the tested signal here is the GPS L1 C/A, the integration 

length is 1 ms. The number of the satellites signals being 

tracked is the number of the visible satellites that have been 

acquired, which could range between 8-12 satellites. This 

number is small, and hence in order to test the tracking 

algorithm under high computational load, massive noise 

channels are needed so that the extreme power of the GPU 

can be exerted. In this test, noise channels are simulated by 

duplicating the normal tracking channels, which contain 

the real satellites signals. The number of the tracking 

channels containing both real and simulated satellite 

signals, 𝑁𝑐, is varying in the range of [0, 1024], with an 

interval of 1. The execution time of the GPU-based 

tracking under different numbers of processing channels is 

collected and plotted in Fig. 7. In order to quantify the 

execution performance of the GPU-based tracking, a 

horizontal line indicating 1 ms execution time is drawn to 

find the corresponding number of processing channels 

under such situation, which is 330 here. This is the 

maximum number of channels that the GPU-based tracking 

can maintain in real time. It should be noted that the 

execution time of the GPU-based tracking is not 0 when 

the number of the processing channels is 0. The memory 

transfer of the input raw IF data and other overhead 

processing due to the execution of kernel function are 

responsible for this phenomenon. 

 

 
Fig. 7 The performance of the GPU-based tracking 

 

0 100 200 300 400 500 600 700 800 900 1000
0

0.5

1

1.5

2

2.5

3

maxch: 330

Number of channels

P
ro

c
e

s
s
in

g
 t
im

e
 (

m
s
)

 

 

GPU



Besides the performance evaluation of the GPU-based 

tracking, a comparison of the GPU-based tracking and the 

serial version of the CPU-based tracking is also conducted. 

The speedup brought by the GPU-based tracking under 

different numbers of the processing channels is plotted in 

Fig. 8. This plots shows that the speedup grows with the 

number of the processing channels increased until it 

reaches a peak value at nearly 50. After that, the speedup 

is prone to be a constant number, and its growth rate 

decreases gradually to 0. There is a transient state for the 

speedup to grow to the peak because the GPU is not fully 

occupied when the number of the processing channels is 

still small. The increase in the number of the processing 

channels in small values will not lead the execution time 

growth of the GPU-based tracking to be as significant as 

that of the CPU-based tracking. While the computational 

load grows to be great enough with the number of the 

processing channels increased, both the GPU and the CPU 

are fully utilized. The speedup will then meet a bottleneck, 

which represents the extreme performance gap between the 

GPU and the CPU devices when implementing the tracking 

algorithm. 

 

 
Fig. 8 The speedup of the GPU-based tracking 

 

The speedup peak of the GPU-based tracking is larger than 

the speedup peak of the GPU based acquisition. The main 

reason is that the FFTW library used in the CPU based 

acquisition supports Single Instruction Multiple Data 

(SIMD) instructions [14], which speed up the computation 

on the CPU up to above 10 times faster than without using 

them in an ideal situation [15]. As for the CPU-based 

tracking, there is no such accelerating methods used. 

Therefore, the benchmark of the GPU-based acquisition is 

higher than that of the GPU-based tracking. This leads to 

the conclusion that the speedup brought by the GPU-based 

tracking is more significant. 

 

 

6. MODULAR ASSEMBLY 

 

NAVSDR adopts a modular design so that it can 

accommodate newly developed algorithms agilely. The 

GPU-based acquisition and tracking algorithms are 

implemented, and compiled into dlls, which are composed 

of the same interfaces as the CPU-based versions. The 

GPU-based acquisition and tracking components can 

replace the CPU-based acquisition and tracking 

components to perform the same functions in NAVSDR. 

The modular design not only facilitates the assembly of 

different algorithms, but also enables the developer of each 

component of NAVSDR to work independently and 

concurrently. A GUI interface is developed to facilitate the 

usage of NAVSDR. It can display the constellation plot, 

the carrier to noise ratios (C/N0) of the signals, the 

positioning results, and the Dilution of Precisions (DOP) 

as shown in Fig. 9. 

 

 
Fig. 9 GUI interface of NAVSDR 

 

 

7. CONCLUSIONS  

 

In this paper, a GPU-based modular GPS software receiver 

named “NAVSDR” is introduced. NAVSDR adopts a 

modular design and is composed of seven well-defined 

components. The modular division makes NAVSDR more 

scalable and reusable for the newly added algorithms, such 

as the GPU-based acquisition and tracking. The paper 

proposes and describes novel GPU-based designs for 

signal acquisition and tracking adopted in NAVSDR. The 

proposed GPU-based acquisition and tracking are 

implemented and optimized using CUDA. Their execution 

performance is evaluated and compared with their CPU-

based counterparts. The results asserted that the GPU-

based acquisition and tracking can efficiently accelerate 

the execution of the baseband processing in NAVSDR. The 

GPU-based tracking can even maintain above 300 channels’ 

processing in real time. The paper also presents the 

mechanism of the modular assembly when integrating the 

GPU-based acquisition and tracking into NAVSDR. 

 

 

ACKNOWLEDGMENTS  

 

The work in this paper was supported by the National 

Natural Science Foundation of China (41174028, 

61273053, 41404029), China Postdoctoral Science 

Foundation funded project (2013M542061, 2014T70738), 

the Fundamental Research Funds for the Central 

Universities (2014618020201), and National Natural 

Science Foundation of Hubei province (2014CFB727). 

 

0 100 200 300 400 500 600 700 800 900 1000
0

10

20

30

40

50

60

Number of channels

C
P

U
 p

ro
c
e

s
s
in

g
 t
im

e
 /
 G

P
U

 p
ro

c
e

s
s
in

g
 t
im

e



REFERENCES   

 

[1] Heckler GW, Garrison JL (2006) SIMD correlator 

library for GNSS software receivers. GPS Solutions, 10: 

269-276 

 

[2] Hobiger T, Tadahiro G, Jun A, Yasuhiro K, Tetsuro K 

(2010) A GPU-based real-time GPS software receiver. 

GPS Solutions, 14: 207-216 

 

[3] Huang B, Yao Z, Guo F, Deng S, Cui X, Lu M (2013) 

STARx–A GPU-based Multi-System Full-Band Real-

Time GNSS Software Receiver. ION GNSS+ 2013, 

Institute of Navigation, Nashville, Tennessee, September, 

1549-1559 

 

[4] Pany T, Gohler E, Irsigler M, Winkel J (2010) On the 

state-of-the-art of real-time GNSS signal acquisition–a 

comparison of time and frequency domain methods. Indoor 

Positioning and Indoor Navigation (IPIN), 2010 

International Conference, 1-8 

 

[5] Pany T, Riedl B, Winkel J (2010) Efficient GNSS 

signal acquisition with massive parallel algorithms using 

GPUs. International Technical Meeting of the Satellite 

Division of the Institute of Navigation, 1889-1895 

 

[6] Park KW, Yang JS, Park C, Lee MJ (2014) 

Implementation of GPGPU-based Real-time Signal 

Acquisition and Tacking Module for Multi-constellation 

GNSS Software Receiver. ION GNSS+ 2014, Institute of 

Navigation, Tampa, Florida, September, 1410-1416 

 

[7] Seo J, Chen YH, De Lorenzo, DS, Lo S, Enge P, Akos 

D, and Lee J (2011) A real-time capable software-defined 

receiver using GPU for adaptive anti-jam GPS Sensors. 

Sensors, 9: 8966-8991 

 

[8] Farber R (2011) CUDA application design and 

development. Elsevier 

 

[9] Wilt N (2013) The cuda handbook: A comprehensive 

guide to gpu programming. Pearson Education 

Xie G (2009) Principles of GPS and Receiver Design (in 

Chinese). Publishing House of Electronics Industry 

 

[10] Nvidia (2014) CUFFT Library User’s Guide. 

Available on the Internet 

 

[11] Nvidia (2014) Whitepaper-NVIDIA GeForce GTX 

750 Ti. Available on the Internet 

 

[12] Frigo, Matteo, and Steven G. Johnson. "FFTW: An 

adaptive software architecture for the FFT." Acoustics, 

Speech and Signal Processing, 1998. Proceedings of the 

1998 IEEE International Conference on. Vol. 3. IEEE, 

1998. 

 

[13] Harris M (2007) Optimizing parallel reduction in 

CUDA. Available on the Internet 

 

[14] Frigo M, Johnson SG (2013) FFTW user’s manual. 

Massachusetts Institute of Technology. 

 

[15] Suzuki T, Kubo N (2014) GNSS-SDRLIB: An Open-

Source and Real-Time GNSS Software Defined Radio 

Library. ION GNSS+ 2014, Institute of Navigation, Tampa, 

Florida, September, 1364-1375 

 

[16] Nvidia (2014) CUDA C Programming Guide. 

Available on the Internet 

 

[17] Nvidia (2014) CUDA C Best Practices Guide. 

Available on the Internet 

 

[18] Nvidia (2014) Maxwell Compatibility Guide. 

Available on the Internet 

 


