
 NAVSDR: A GPU-based Modular GPS

Software Receiver

Liangchun Xu, Wuhan University, China

Nesreen I. Ziedan, Zagazig University, Egypt

Wenfei Guo, Xiaoji Niu, Wuhan University, China

BIOGRAPHIES

Liangchun Xu is a Ph.D. candidate at the GNSS Research

Center, Wuhan University, China. He received his B.Eng.

and M.Eng. degrees in Geomatics Engineering from

Wuhan University, China, in 2012 and 2014, respectively.

His research interests include GNSS receiver technology.

Nesreen I. Ziedan is the Acting Department Head and an

Associate Professor at the Computer and Systems

Engineering Department, Faculty of Engineering, Zagazig

University, Egypt. She holds a Ph.D. degree in Electrical

and Computer Engineering from Purdue University, U.S.

She has several U.S. Patents in GPS receivers design and

processing, and she is the author of a book entitled “GNSS

Receivers for Weak Signals”.

Wenfei Guo is a postdoctoral fellow at the GNSS Research

Center, Wuhan University, China. He received his Ph.D.

degree in Communication and Information System from

Wuhan University in 2011. His research currently focuses

on GNSS receivers.

Xiaoji Niu is a Professor at the GNSS Research Center,

Wuhan University, China. He received the B.Eng. degree

(with honors) in Mechanical and Electrical Engineering

and the Ph.D. degree from Tsinghua University, Beijing,

China, in 1997 and 2002, respectively. His research

interests focus on integration navigation.

ABSTRACT

GPS software receivers are widely used in GPS-related

algorithms’ design and implementation. Two significant

considerations involved in developing a GPS software

receiver are the management of the newly introduced

algorithms, and the execution performance of the baseband

processing. A Graphics Processing Unit (GPU) can be used

to accelerate the execution of a GPS software receiver. This

paper introduces a novel GPS software receiver named

“NAVSDR”. NAVSDR adopts a modular design, which

makes it scalable and reusable to accommodate new

algorithms, such as GPU-based acquisition and tracking.

The paper also proposes novel GPU-based acquisition and

tracking architectures, which are independent of the GPU

device, the signal type, and the integration length. The

focus of the paper is on the following aspects: introducing

the modular design of NAVSDR, demonstrating the

detailed architectures of the proposed GPU-based

acquisition and tracking, providing tests to evaluate the

execution performance of the GPU-based acquisition and

tracking, and describing how NAVSDR integrates the

implementation of the proposed GPU-based acquisition

and tracking properly and agilely with its modular design.

The performance evaluation tests indicate that the GPU-

based acquisition and tracking can accelerate the execution

of NAVSDR significantly, especially for the tracking

process. With an NVIDIA GeForce GTX 750 Ti GPU and

tested signals of 9.75 MHz sampling rate and 4-bit

resolution, the GPU-based tracking in NAVSDR can

achieve above 50 times performance gain at the peak

compared with its CPU-based counterpart.

1. INTRODUCTION

GPS software receivers are widely applied in designing and

testing new satellite navigation related algorithms. When

building a GPS software receiver, a developer should not

only consider the software function, but also the execution

performance. The required high computational throughput

in the signal acquisition and signal tracking processes

prevents a standard GPS software receiver, which adopts

Single Instruction Single Data (SISD) algorithms on a

Central Processing Unit (CPU), from working in real time

[1]. An efficient replacement for a CPU is a Graphics

Processing Unit (GPU). A GPU is composed of massive

parallel processors with high floating point performance

and memory bandwidth. It can be used to accelerate both

the acquisition and tracking processes in GPS software

receivers. Accelerating the execution of GPS software

receivers using General-Purpose computing on the GPU

(GPGPU) has been carried out by many researchers [2-7].

A performance comparison between several GPU-based

GPS SDRs can be found in [7]. This paper proposes novel

GPU-based acquisition and tracking algorithms, which are

independent of the GPU device, the signal type, and the

integration length. Compared with existing GPU-based

baseband algorithms, the proposed algorithms can achieve

a competitive performance.

A significant consideration involved in building a GPS

software receiver is how to maximize and maintain its

flexibility and scalability in the face of the increase in the

number of the developed algorithms. A conventional GPS

software receiver composed of one component will

become bloated and unorganized after the addition of too

many new functions. For example, the GPU-based

acquisition and tracking algorithms perform the same

functions as the already existing CPU-based versions in a

GPS software receiver. Therefore, following the simplest

practice of directly adding the code that implements the

new GPU-based algorithms into the extant program will

increase the size and complexity of the software. In fact, as

more overlapping functions are introduced, the code of a

conventional GPS software receiver could be rendered

bloat, which could lead to a loose organization of the

deployed software.

A modular design, which divides the software into several

components according to different functions, can be

adopted to address the aforementioned issue. The

advantages of a modular design are as follows: 1)

Independent components can integrate into different

versions of GPS software receivers. A modular design can

facilitate assembling the code, and it would only package

the necessary components for the deployment of the

software. This mechanism will encapsulate the final

deployed software in a relatively small size. 2) A well-

defined component provides the interface for the

invocation of the external functions, while its

implementation details are hidden. Therefore, multiple

components of a GPS software receiver can be developed

concurrently, without being interfered with each other.

Moreover, when new components are integrated, a

developer only needs to consider the coupling of the

interfaces, instead of modifying the whole software.

Therefore, a modular design will effectively increase the

scalability of the software for future development.

This paper introduces a GPU-based modular GPS software

receiver named “NAVSDR”. NAVSDR is composed of

seven pre-defined components according to the function

division. The modular design enables NAVSDR to

accommodate new algorithms, such as GPU-based

acquisition and tracking properly and agilely. The

proposed novel architectures for GPU-based acquisition

and tracking are implemented in NAVSDR.

The remainder of this paper is organized as follows. First,

the detailed modular design of NAVSDR is presented.

Then, the GPGPU technology used to accelerate the

execution of NAVSDR is introduced. Novel architectures

for GPU-based acquisition and tracking are proposed and

evaluated in the following two sections. Another section

demonstrates how NAVSDR assembles the newly built

GPU-based acquisition and tracking with its modular

design. Finally, the conclusions are presented.

2. MODULAR DESIGN

The modular design includes both the component design

and the interface design. The component design defines the

expected function of each component, while the interface

design defines the interface specifications between

different components. A good modular design divides the

program into loosely coupled, independent, and reusable

components. The number of the defined interfaces is at the

minimum level. While in each component, the essential

functions are complete.

NAVSDR is composed of seven components: the

preprocessing component, the correlation component, the

acquisition component, the tracking component, the

measurement extraction component, the Position, Velocity

and Time (PVT) solution component, and the utility tools

component. Each component is packaged into a dynamic-

link library (DLL), and invoked by other components and

the main application, which is the entrance of NAVSDR.

In NAVSDR, the aforementioned seven components are

designed according to their different functions. Each

component’s function can be described as follows. The

preprocessing component reads the pre-stored intermediate

frequency (IF) sampling data into a data buffer residing in

the CPU memory for further processing. The correlation

component generates the local carrier and code replicas,

and correlates them with the IF samples. The acquisition

and the tracking components use the output of the

correlation component to accomplish the signal acquisition

and tracking functions. The measurement extraction

component is responsible for extracting carrier phase and

pseudorange measurements from the output of the tracking

component. The PVT estimation component estimates the

position, velocity, and time from the extracted

measurements. Finally, the utility tools component

provides the basic matrix operation functions, the time and

coordinate transfer functions, and other common functions

for NAVSDR.

The interface design of each component is based on the

relationship between different components. In NAVSDR,

the utility tools component is invoked by all the other

components. The correlation component is invoked by the

acquisition component and the tracking component.

Moreover, the tracking component is the central

component, which invokes the measurement extraction

component. When more than four satellites’ measurements

are extracted, the measurement extraction component

would invoke the PVT estimation component to generate

the final position, velocity and time results. The

preprocessing component, the acquisition component, the

tracking component are independent from each other, and

they hold the interfaces to integrate into a complete GPS

software receiver. The modular design of NAVSDR is

shown in Fig. 1. Each block in Fig. 1 represents a

component of NAVSDR, in which the detailed functions

of each component are listed. Moreover, the link lines

between different blocks represent the invocations between

different components in NAVSDR.

 Matrix operations
 Buffer operations
 Definition of common structures,

constant numbers, and functions

Utility

 Resample the raw IF data
 Read data into memory buffer
 Verify the correctness of the

first 1ms data

Preprocessing

 Estimate the position, velocity and time
 Calculate the precision of the estimation
 Analyze the residuals of the raw

measurements

PVT Estimation

 Set acquisition mode
 Set Doppler searching range
 Detect the signal

Acquisition

 Set FLL/PLL/DLL bandwidths
 Set FLL/PLL/DLL orders
 Track the acquired signal

Tracking

 Set coherent/noncoherent correlation time
 Generate local carrier and code signals
 Correlate the received signal

Correlation

 Set the extraction rate
 Extract the measurements
 Determine whether to
 output Rinex files

Measurement Extraction

Fig. 1 Modular design of NAVSDR

3. GPGPU TECHNOLOGY

Compared with a CPU, a GPU is composed of massive

cores with tremendous computational power and high

memory bandwidth [8]. GPGPU provides an approach to

accelerate scientific applications, including the correlation

process in GPS software receivers.

CUDA is a parallel platform invented by NVIDIA for

C/C++/Fortran programming on the GPU. CUDA C is

employed in this paper to design and realize the GPU-

based acquisition and tracking algorithms. In order to

utilize the computational power of the multiprocessors in

GPU, kernels (functions) that are executed by each

individual CUDA thread should be defined as C functions

using the keyword “__global__”. Massive threads can

execute on the GPU concurrently. Each 32 threads are

coupled into a warp so that they can execute one common

instruction with different data at a time. Branch divergence,

which means executing different instructions in the threads

of a warp, will significantly decrease efficiency, and thus it

should be avoided. Warps are grouped into blocks, where

the threads of a block are executed concurrently on one

multi-threaded Streaming Multiprocessor (SM). Blocks are

further grouped into a grid, where they are executed

concurrently on multiple SMs in a GPU.

CUDA also provides different types of memories in the

GPU to maximize the performance [9]. Global memory,

shared memory, local memory, and registers are used in the

proposed GPU-based architecture design. They are

allocated for grid, block, and thread. The bandwidth of

different kinds of GPU memories varies. The registers

provide the fastest memory transfer with nearly 8TB/s

bandwidth. The shared memory and global memory follow

the registers in terms of the memory transfer speed. The

local memory is an abstract memory type to hold spilled

registers. Register spilling occurs when a block requires

more registers on an SM than the available. GPUs with

CUDA capability 2.0 or higher spill registers to L1 cache,

which is physically integrated with the shared memory.

The older GPUs spill registers directly to the global

memory. Therefore, the local memory’s bandwidth is

dependent on the device. The slowest memory transfer is

between the host memory and the device memory with

about 8GB/s bandwidth. This bandwidth value is limited

by the Peripheral Component Interconnect Express (PCIe)

connector between the CPU memory and the GPU memory.

4. GPU-BASED ACQUISITION

Signal acquisition is a search process that determines the

visible satellites and provides rough estimates of their code

delays and Doppler shifts. A common and efficient signal

acquisition technique is circular correlation using FFT.

Circular correlation works as follows. The received signal

is first stripped off the carrier, which is compensated by

each possible Doppler shift. Following that, the received

signals and local code replica signals are transformed into

the frequency domain using FFT. The complex conjugate

of the FFT of each local code signal is multiplied by each

FFT of the Doppler compensated signal. The results of the

multiplication process are transformed back to the time

domain by applying IFFT, which generates the required

correlation at all the possible code delays and Doppler

shifts. The circular correlation process can be described by:

𝑝(𝑓𝑑 , 𝑘, 𝑛) = 𝐼𝐹𝐹𝑇(𝐹𝐹𝑇(𝑆𝐼𝐹(𝑛) ∙ 𝑅𝑐𝑎𝑟𝑟(𝑓𝑑 , 𝑛))

 ∙ 𝐹𝐹𝑇∗(𝐶𝑝(𝑘, 𝑛)) (1)

where 𝑆𝐼𝐹(𝑛) is the received IF signal, 𝑅𝑐𝑎𝑟𝑟(𝑓𝑑, 𝑛) is the

local carrier replica signal, which is generated for a

possible Doppler shift, 𝑓𝑑 , and 𝐶𝑝(𝑘, 𝑛) is the local code

replica signal, which is generated for a possible satellite, 𝑘.

The acquisition process is repeated for each possible

satellite, which is time consuming. Executing the

acquisition process on a GPU can lead to a huge reduction

in the acquisition time. The acquisition process can be

accelerated by the GPU using the cuFFT library in CUDA

Toolkit. In the GPU-based circular correlation algorithm,

local carrier replica signals with different Doppler shifts

are generated and stored consecutively in an array, which

resides in the GPU memory. The Doppler removal is

processed in parallel using a kernel function for calculating

two vectors’ product. The advanced data layout feature of

the cuFFT library is used in the algorithm design of the

GPU-based acquisition. This feature can allow

transforming a subset of the product array. The subset array

used here contains the product of each local carrier replica

signal, compensated with Doppler shift, and the received

IF signal. The advanced data layout feature can be set by

calling the function “cufftPlanMany”. Similarly, the FFT

process of the local code replica signals and the final IFFT

calculation can also benefit from this batch process feature.

Another kernel function is written to generate the local

code replica signals and complete the code correlation after

the FFT process. The parallel GPU-based acquisition can

search the visible satellites, the Doppler shifts, and the code

delays concurrently. As a comparison, the CPU-based

circular correlation can only search the code delays or the

Doppler shifts in a parallel way. A detailed description of

the GPU-based circular correlation algorithm is shown in

Fig. 2, where, 𝑇 is the coherent integration length, 𝑁𝑓 is the

number of Doppler shifts, 𝑁𝑠 is the number of samples in

𝑇 ms, and 𝑁𝑐 is the number of satellites signals being

processed.

T ms 0 1 Nf -1...

Nf*Ns

0 1 Nf -1...

0 1 Nf -1...

FFT

Nc*Ns

0 1 Nc -1...

0 1 Nc -1...

FFT

Ns

Local carrier signal

Local code signal

0 1 Nc*Nf -1...

Nc*Nf*Ns

0 1 Nc*Nf -1...

IFFT

CONJ

Fig. 2 The GPU-based acquisition using FFT

The final output array of the GPU-based acquisition

contains the correlated results at every possible Doppler

shift and code delay. The size of the array is equal to the

multiplication of the number of possible visible satellites,

the number of possible Doppler shifts, and the number of

possible local code replica signals. Before continuing with

the signal detection process, the output array, which has a

huge size, is transferred from the GPU memory to the CPU

memory in a coalescent way. The array should be divided

into 𝑁𝑐 equal parts in order to extract the acquisition results

in a way similar to the one that is adopted in the CPU-based

acquisition.

The aforementioned GPU-based acquisition design is an

ideal solution for parallel acquisition process. However,

the required GPU memory of the algorithm is very huge.

Considering the maximum transform size of the cuFFT

library is limited by the available GPU resources [10], the

cuFFT library would sooner or later fail to allocate GPU

resources for such a huge size of array, when the

integration time is increased. This could prevent the

application of IFFT in the last step of the proposed GPU-

based acquisition. A compromise can resolve this issue by

serially applying the final IFFT for 𝑁𝑐 times. This practice

is at the cost of degrading the parallel processing, but it

successfully reduces the maximum required transform size

from 𝑁𝑐 ∗ 𝑁𝑓 ∗ 𝑁𝑠 to 𝑁𝑓 ∗ 𝑁𝑠 , which guarantees the

proposed GPU based acquisition to process more than 10

ms long coherent integration on a GPU with medium

calculation power. The implementation of the GPU-based

acquisition in this paper adopts the aforementioned

compromised algorithm. NAVSDR provides an

acquisition view as shown in Fig. 3 to visualize the

correlation results of each satellite in the acquisition

process.

Fig. 3 The acquisition view of NAVSDR

In order to evaluate the execution performance of the

proposed GPU-based acquisition algorithm, the cold start

experiment with different coherent integration

lengths, 𝑇 𝑚𝑠 , is conducted. The tested GPS signal is

complex numbers with 19.5 MHz sampling rate (9.75 MHz

for both in-phase and quadrature-phase samples), and 4-bit

resolution. The Doppler shift range is [-5000 Hz, 5000 Hz],

and the number of searched satellites is, 𝑁𝑐 = 32 . The

coherent integration time length range is [1 ms, 10 ms] with

an interval of 1 ms. In this test, with a Doppler range of

±5000 𝐻𝑧 , the number of Doppler bins, 𝑁𝑓 , with a

separation of 1/𝑇, is calculated as follows.

 𝑁𝑓 =
5000 − (−5000)

1 (0.001 ∗ 𝑇)⁄
+ 1 = 10𝑇 + 1 (2)

Besides the complexity of the algorithm itself, the

implementation’s performance of the GPU-based

acquisition is also influenced by the GPU device used. The

chosen device here is an NVIDIA GeForce GTX 750 Ti

GPU. Its technical specifications can be found in [11]. The

execution time of the GPU-based acquisition with different

coherent integration lengths is collected and plotted in Fig.

4. A serial implementation of the CPU-based acquisition

using FFTW library provides a benchmark for evaluating

the execution performance of the GPU-based acquisition.

The CPU used here is a quad-core 3.6 GHz Intel Core i7-

4790.

Fig. 4 The execution time of the CPU-based acquisition

and the GPU-based acquisition

With the coherent integration time increased, the execution

time of both the GPU-based and the CPU-based acquisition

processes tends to increase in a long run. However, the

execution time of the CPU-based acquisition decreases

when the coherent length increases from 3 ms to 4 ms. This

can be explained by the fact that the speed of the FFTW

library in “MFLOPS” fluctuates with the input array size

[12]. The execution time of the GPU-based acquisition

approaches that of the CPU-based acquisition when the

integration length is 1 ms or 2 ms. This is because a low

computational load cannot exert the full power of the GPU.

On the contrary, the overhead of the kernel functions and

the memory transfer between the GPU memory and the

CPU memory compose a large portion of the execution

time, which would cancel out the speedup brought by the

GPU-based computation. This phenomenon will also occur

when evaluating the execution performance of the GPU-

based tracking. With the integration time increased, the

computational gain on the GPU becomes significant. When

the integration time is 10 ms, the speedup brought by the

GPU-based acquisition is about 3.3 times.

5. GPU-BASED TRACKING

Following signal acquisition, a tracking process is

performed. The tracking process aims at estimating the

code and carrier parameters with high accuracy, and

providing a continuous tracking of the change in the

received signal. The tracking process also requires a

correlation process. However, the correlation is calculated

at the current estimates of the code and carrier parameters,

not at all the possible code delays and Doppler shifts, like

in the acquisition process. The prompt correlated

signal, 𝑆𝐼𝑄,𝑝, can be found from

 𝑆𝐼𝑄,𝑝 = ∑ 𝑆𝐼𝐹(𝑛)𝑅𝑐𝑎𝑟𝑟
∗ (𝑛)𝐶𝑝(𝑛)

𝑁−1

𝑛=0

 (3)

where 𝑆𝐼𝐹(𝑛) is the received IF signal, 𝑅𝑐𝑎𝑟𝑟
 (𝑛) is the

local carrier replica signal, and 𝐶𝑝(𝑛) is the local prompt

code replica signal. The early correlated signal, 𝑆𝐼𝑄,𝑒 and

the late correlated signal, 𝑆𝐼𝑄,𝑙 used for code tracking loop

can be also calculated in a similar way.

The tracking process can be parallelized on both the

channel level and the sampling data level, where each

channel is responsible for the correlation of one satellite.

Considering the aforementioned CUDA programming

model, each channel’s correlation process can be mapped

into one block, and each signal sample can be mapped into

one thread. The integration after carrier and code wipeoff

can be transformed to a block reduction, which is the

process of calculating the sum of the variables in threads of

a block. The algorithm of the GPU-based tracking is shown

in Fig. 5, where 𝑁𝑐 is the number of satellites signals being

processed, and 𝑁𝑠 is the number of samples in one

correlation process. Since the assigned blocks per

grid, 𝑔𝑟𝑖𝑑𝐷𝑖𝑚. 𝑥, and threads per block, 𝑏𝑙𝑐𝑜𝑘𝐷𝑖𝑚. 𝑥, are

limited numbers, they may be less than 𝑁𝑐 , 𝑎𝑛𝑑 𝑁𝑠 ,

respectively. There are two for loops assisting the blocks

and threads to complete the whole computation. The

proposed algorithm is actually applicable to all GNSS

signals, since 𝑁𝑐 and 𝑁𝑠 are all variables in this algorithm.

Therefore, the algorithm is independent of the correlation

time length, the code type, and the GPU device, which

makes the proposed GPU-based tracking architecture

reusable and scalable.

The GPU-based tracking process needs six reductions in

each block to generate the early, prompt, and late results

for both in-phase and quadrature-phase received signals.

There are two subset algorithms for the block reduction in

the GPU-based tracking. 1) The block sum can be

calculated using a similar tree-like reduction described in

[13]. Shared memory of the GPU is used in this process.

The aforementioned design and implementation approach

is applicable on all CUDA-enabled GPUs. 2) The block

sum can be also calculated using warp shuffle functions.

For the GPUs with CUDA capability greater than 3.0, some

new CUDA features including warp shuffle functions are

introduced. “__shfl_down” and “__shfl_xor” functions can

be utilized to perform a reduction across 32 threads in a

warp without consuming any shared memory [9]. The sums

of different warps in a block can be added up using atomic

function in CUDA to generate a correct block sum. Similar

to the GPU-based acquisition, the last step of the GPU-

based tracking is to transfer the correlation results from the

GPU memory to the CPU memory.

0 1 2 3 4 5 6 7 8 9 10 11
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Coherent integration time (ms)

E
x
e

c
u

ti
o

n
 t
im

e
 o

f
a

c
q

u
is

it
io

n
 (

m
s
)

CPU

GPU

Local carrier signal

Sample

Local code signal
(E, P, L)

product

Ns -1

Ns -1

Ns -1

Ns -1

blockDim.x

blockDim.x

blockDim.x

blockDim.x

...

...

...

...

0

Thread 0

0

0

0

1

Thread 1

1

1

1

...

...

...

...

blockDim.x - 1

Thread blockDim.x-1

blockDim.x - 1

blockDim.x - 1

blockDim.x - 1

Nc -1Block reduction gridDim.x ...0

Block 0

1

Block 1

... gridDim.x - 1

Block gridDim.x-1

Nc -1Channel gridDim.x ...0

Block 0

1

Block 1

... gridDim.x - 1

Block gridDim.x-1

Fig. 5 The GPU-based tracking

NAVSDR provides a tracking view as shown in Fig. 6 to

visualize the correlation results of each satellite in the

tracking process.

Fig. 6 The tracking view of NAVSDR

In order to evaluate the execution performance of the

proposed GPU-based tracking algorithm, the same CPU-

based acquisition result is used to initialize both the GPU-

based and CPU-based tracking processes. The parameters

of the tested GPS signal and the devices used here are the

same as that in the performance test of the GPU-based

acquisition. In the performance test of the GPU-based

tracking, the number of the satellites signals being

processed, 𝑁𝑐 , is variable, which is different from the

situation in the cold start mode of the GPU-based

acquisition. A common practice to evaluate the

performance of the GPU-based tracking is to obtain the

number of tracking channels the GNSS software receiver

can maintain in real time [7]. The coherent integration time

for each satellite is usually set to be one code length. Since

the tested signal here is the GPS L1 C/A, the integration

length is 1 ms. The number of the satellites signals being

tracked is the number of the visible satellites that have been

acquired, which could range between 8-12 satellites. This

number is small, and hence in order to test the tracking

algorithm under high computational load, massive noise

channels are needed so that the extreme power of the GPU

can be exerted. In this test, noise channels are simulated by

duplicating the normal tracking channels, which contain

the real satellites signals. The number of the tracking

channels containing both real and simulated satellite

signals, 𝑁𝑐, is varying in the range of [0, 1024], with an

interval of 1. The execution time of the GPU-based

tracking under different numbers of processing channels is

collected and plotted in Fig. 7. In order to quantify the

execution performance of the GPU-based tracking, a

horizontal line indicating 1 ms execution time is drawn to

find the corresponding number of processing channels

under such situation, which is 330 here. This is the

maximum number of channels that the GPU-based tracking

can maintain in real time. It should be noted that the

execution time of the GPU-based tracking is not 0 when

the number of the processing channels is 0. The memory

transfer of the input raw IF data and other overhead

processing due to the execution of kernel function are

responsible for this phenomenon.

Fig. 7 The performance of the GPU-based tracking

0 100 200 300 400 500 600 700 800 900 1000
0

0.5

1

1.5

2

2.5

3

maxch: 330

Number of channels

P
ro

c
e

s
s
in

g
 t
im

e
 (

m
s
)

GPU

Besides the performance evaluation of the GPU-based

tracking, a comparison of the GPU-based tracking and the

serial version of the CPU-based tracking is also conducted.

The speedup brought by the GPU-based tracking under

different numbers of the processing channels is plotted in

Fig. 8. This plots shows that the speedup grows with the

number of the processing channels increased until it

reaches a peak value at nearly 50. After that, the speedup

is prone to be a constant number, and its growth rate

decreases gradually to 0. There is a transient state for the

speedup to grow to the peak because the GPU is not fully

occupied when the number of the processing channels is

still small. The increase in the number of the processing

channels in small values will not lead the execution time

growth of the GPU-based tracking to be as significant as

that of the CPU-based tracking. While the computational

load grows to be great enough with the number of the

processing channels increased, both the GPU and the CPU

are fully utilized. The speedup will then meet a bottleneck,

which represents the extreme performance gap between the

GPU and the CPU devices when implementing the tracking

algorithm.

Fig. 8 The speedup of the GPU-based tracking

The speedup peak of the GPU-based tracking is larger than

the speedup peak of the GPU based acquisition. The main

reason is that the FFTW library used in the CPU based

acquisition supports Single Instruction Multiple Data

(SIMD) instructions [14], which speed up the computation

on the CPU up to above 10 times faster than without using

them in an ideal situation [15]. As for the CPU-based

tracking, there is no such accelerating methods used.

Therefore, the benchmark of the GPU-based acquisition is

higher than that of the GPU-based tracking. This leads to

the conclusion that the speedup brought by the GPU-based

tracking is more significant.

6. MODULAR ASSEMBLY

NAVSDR adopts a modular design so that it can

accommodate newly developed algorithms agilely. The

GPU-based acquisition and tracking algorithms are

implemented, and compiled into dlls, which are composed

of the same interfaces as the CPU-based versions. The

GPU-based acquisition and tracking components can

replace the CPU-based acquisition and tracking

components to perform the same functions in NAVSDR.

The modular design not only facilitates the assembly of

different algorithms, but also enables the developer of each

component of NAVSDR to work independently and

concurrently. A GUI interface is developed to facilitate the

usage of NAVSDR. It can display the constellation plot,

the carrier to noise ratios (C/N0) of the signals, the

positioning results, and the Dilution of Precisions (DOP)

as shown in Fig. 9.

Fig. 9 GUI interface of NAVSDR

7. CONCLUSIONS

In this paper, a GPU-based modular GPS software receiver

named “NAVSDR” is introduced. NAVSDR adopts a

modular design and is composed of seven well-defined

components. The modular division makes NAVSDR more

scalable and reusable for the newly added algorithms, such

as the GPU-based acquisition and tracking. The paper

proposes and describes novel GPU-based designs for

signal acquisition and tracking adopted in NAVSDR. The

proposed GPU-based acquisition and tracking are

implemented and optimized using CUDA. Their execution

performance is evaluated and compared with their CPU-

based counterparts. The results asserted that the GPU-

based acquisition and tracking can efficiently accelerate

the execution of the baseband processing in NAVSDR. The

GPU-based tracking can even maintain above 300 channels’

processing in real time. The paper also presents the

mechanism of the modular assembly when integrating the

GPU-based acquisition and tracking into NAVSDR.

ACKNOWLEDGMENTS

The work in this paper was supported by the National

Natural Science Foundation of China (41174028,

61273053, 41404029), China Postdoctoral Science

Foundation funded project (2013M542061, 2014T70738),

the Fundamental Research Funds for the Central

Universities (2014618020201), and National Natural

Science Foundation of Hubei province (2014CFB727).

0 100 200 300 400 500 600 700 800 900 1000
0

10

20

30

40

50

60

Number of channels

C
P

U
 p

ro
c
e

s
s
in

g
 t
im

e
 /
 G

P
U

 p
ro

c
e

s
s
in

g
 t
im

e

REFERENCES

[1] Heckler GW, Garrison JL (2006) SIMD correlator

library for GNSS software receivers. GPS Solutions, 10:

269-276

[2] Hobiger T, Tadahiro G, Jun A, Yasuhiro K, Tetsuro K

(2010) A GPU-based real-time GPS software receiver.

GPS Solutions, 14: 207-216

[3] Huang B, Yao Z, Guo F, Deng S, Cui X, Lu M (2013)

STARx–A GPU-based Multi-System Full-Band Real-

Time GNSS Software Receiver. ION GNSS+ 2013,

Institute of Navigation, Nashville, Tennessee, September,

1549-1559

[4] Pany T, Gohler E, Irsigler M, Winkel J (2010) On the

state-of-the-art of real-time GNSS signal acquisition–a

comparison of time and frequency domain methods. Indoor

Positioning and Indoor Navigation (IPIN), 2010

International Conference, 1-8

[5] Pany T, Riedl B, Winkel J (2010) Efficient GNSS

signal acquisition with massive parallel algorithms using

GPUs. International Technical Meeting of the Satellite

Division of the Institute of Navigation, 1889-1895

[6] Park KW, Yang JS, Park C, Lee MJ (2014)

Implementation of GPGPU-based Real-time Signal

Acquisition and Tacking Module for Multi-constellation

GNSS Software Receiver. ION GNSS+ 2014, Institute of

Navigation, Tampa, Florida, September, 1410-1416

[7] Seo J, Chen YH, De Lorenzo, DS, Lo S, Enge P, Akos

D, and Lee J (2011) A real-time capable software-defined

receiver using GPU for adaptive anti-jam GPS Sensors.

Sensors, 9: 8966-8991

[8] Farber R (2011) CUDA application design and

development. Elsevier

[9] Wilt N (2013) The cuda handbook: A comprehensive

guide to gpu programming. Pearson Education

Xie G (2009) Principles of GPS and Receiver Design (in

Chinese). Publishing House of Electronics Industry

[10] Nvidia (2014) CUFFT Library User’s Guide.

Available on the Internet

[11] Nvidia (2014) Whitepaper-NVIDIA GeForce GTX

750 Ti. Available on the Internet

[12] Frigo, Matteo, and Steven G. Johnson. "FFTW: An

adaptive software architecture for the FFT." Acoustics,

Speech and Signal Processing, 1998. Proceedings of the

1998 IEEE International Conference on. Vol. 3. IEEE,

1998.

[13] Harris M (2007) Optimizing parallel reduction in

CUDA. Available on the Internet

[14] Frigo M, Johnson SG (2013) FFTW user’s manual.

Massachusetts Institute of Technology.

[15] Suzuki T, Kubo N (2014) GNSS-SDRLIB: An Open-

Source and Real-Time GNSS Software Defined Radio

Library. ION GNSS+ 2014, Institute of Navigation, Tampa,

Florida, September, 1364-1375

[16] Nvidia (2014) CUDA C Programming Guide.

Available on the Internet

[17] Nvidia (2014) CUDA C Best Practices Guide.

Available on the Internet

[18] Nvidia (2014) Maxwell Compatibility Guide.

Available on the Internet

